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Key Points:9

• In Canadian hardwater prairie lakes, calculated CO2 fluxes correlate mostly with pH,10

not DIC11

• Intra-annual CO2 correlates with algal abundance (-CO2) and prolonged clearwater12

phases (+CO2)13

• CO2 influx increases with drier weather conditions, and is reduced with extreme N14

loading15

Corresponding author: Emma Wiik, e.wiik@bangor.ac.uk, e.wiik@ucl.ac.uk

–1–



Confidential manuscript submitted to Journal of Geophysical Research: Biogeosciences

Abstract16

Spatio-temporal variation in climate and weather, allochthonous carbon loads, and autochthonous17

factors such as lake metabolism (photosynthesis and respiration) interact to regulate atmo-18

spheric CO2 exchange of lakes. Understanding this interplay in diverse basin types at different19

timescales is required to adequately place lakes into the global carbon cycle, and predict CO220

flux through space and time. We analyzed 18 years of data from seven moderately hard lakes21

in an agricultural prairie landscape in central Canada. We applied generalized additive models22

and sensitivity analyses to evaluate the roles of metabolic and climatic drivers in regulating23

CO2 flux at the intra-annual scale. In all basins, at mean conditions with respect to other pre-24

dictors, metabolic controls resulted in uptake of atmospheric CO2 when surface waters exhib-25

ited moderate primary production, but released CO2 only when primary production was very26

low (5− 13 µg L−1) or when dissolved nitrogen was elevated (>2000 µg L−1), implying that27

respiratory controls offset photosynthetic CO2 uptake under these conditions. Climatically,28

dry conditions increased the likelihood of ingassing, likely due to evaporative concentration29

of base cations and/or reduced allochthonous carbon loads. While more research is required30

to establish the relative importance of climate and metabolism at other time scales (diel, au-31

tumn/winter), we conclude that these hard fresh waters characteristic of continental interiors32

are mainly affected by metabolic drivers of pCO2 at daily-monthly timescales, are climatically33

controlled at interannual intervals, and are more likely to in-gas CO2 for a given level of algal34

abundance, than are softwater, boreal ecosystems.35

1 Introduction36

It is widely accepted that lakes are important nodes that process terrestrial carbon (C)37

and influence global C fluxes [Cole et al., 2007; Downing et al., 2008; Tranvik et al., 2009].38

However, improved understanding of regulatory mechanisms which underlie trends and vari-39

ability among lentic systems is needed to improve predictions of how lakes will both contribute40

and respond to future climate change [Prairie, 2008; Tranvik et al., 2009]. In particular, there41

remains high regional and temporal variation in the mechanisms regulating lake pCO2, despite42

increasing efforts to synthesize and upscale in-lake CO2 levels and greenhouse gas fluxes.43

In part, this variability reflects the wide range of analytical methods and study time frames,44

varying from instantaneous estimates of regional lakes [Duarte et al., 2008; Lapierre and del45

Giorgio, 2012] to decadal analyses of individual sites [Finlay et al., 2015; Perga et al., 2016].46

Furthermore, certain lake types (e.g., hardwater and saline) are understudied relative to softwa-47

ter boreal systems. Variability in the importance of contrasting regulatory mechanisms (e.g.,48

broad-scale climatic drivers vs. local metabolic factors) across temporal and spatial scales can49

obscure the hierarchical relationships among control processes, which in turn limits insights50

derived from upscaled, ecosystem-level comparisons and global estimates.51

Interannual and decadal trends in lake pCO2 are modulated by many interacting vari-52

ables, primarily acting at the landscape scale through climatic and meterological drivers. For53

example, changes in precipitation affects transport of solutes such as dissolved organic (DOC)54

and inorganic carbon (DIC), which in turn alter lake water CO2 content [Ojala et al., 2011].55

In the case of organic forms of carbon, higher substrate supply tends to elevate microbial56

respiration [Maberly et al., 2013; Ducharme-Riel et al., 2015], whereas increased DIC can57

either increase or reduce in situ pCO2 in hardwater systems, depending on ambient pH and al-58

ternate buffering mechanisms [e.g., Baehr and DeGrandpre, 2004; Knoll et al., 2013]. Addi-59

tionally, landscape-scale variation in irradiance (e.g., cloud cover) or air temperature [O’Reilly60

et al., 2015] can lead to evaporative concentration of lakes [Pham et al., 2009] and consequent61

changes in parameters regulating pCO2 (DIC, DOC, nutrients, etc.). For example, in conti-62

nental Canadian hardwater lakes, interannual variability in both temperature and precipitation63

has affected pH and CO2 flux via effects of ice-off timing [Finlay et al., 2015], DIC content64

[Pham et al., 2009], and regional hydrology [Bonsal and Shabbar, 2008; van der Kamp et al.,65

2008].66
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Metabolic processes are likely to be paramount in regulating atmospheric exchange of67

greenhouse gases at scales of hours to days. For example, water-column pCO2 typically in-68

creases overnight as photosynthesis becomes light-limited and respiration continues [Raymond69

et al., 2013; Liu et al., 2016]. In softwater reservoirs, these diel metabolic patterns can ac-70

count for ca. 30% of total variation in CO2 flux over a summer season [Morales-Pineda et al.,71

2014]. In general, larger diel amplitudes of CO2 content are found as lake productivity in-72

creases [Hanson et al., 2003; Shao et al., 2015; Morales-Pineda et al., 2014], suggesting that73

multiple temporal scales may be needed to evaluate CO2 regulation in productive lakes.74

At intermediate timescales, trends in lake pCO2 are likely to be regulated by a com-75

bination of metabolic and climatic mechanisms [Morales-Pineda et al., 2014]. For example,76

metabolic controls underlie seasonal trends in dimictic temperate lakes when, in winter, CO277

accumulates under ice [Denfeld et al., 2015], causing springtime efflux of CO2 during ice78

melt and lake overturn. Reduced pCO2 occurs in summer when the water column is stable79

and primary production increases, whereas pCO2 increases during fall as respiratory products80

in the hypolimnion are mixed into surface waters [Alin and Johnson, 2007; Stets et al., 2009;81

Ducharme-Riel et al., 2015; Marcé et al., 2015]. These seasonal patterns can be disrupted by82

climatic or meteorological events such as passing storms or heat waves [Maberly, 1996; Klug83

et al., 2012; Audet et al., 2017], or be dampened in polymictic lakes where CO2 exhibits more84

limited seasonal variation [Jonsson et al., 2003].85

While metabolic controls of CO2 also operate at seasonal scales in hardwater lakes86

[Striegl and Michmerhuizen, 1998], their influence can be overrun by landscape-level controls87

of solute loading [Anderson et al., 1999; Sobek et al., 2005; Christensen et al., 2013; Knoll88

et al., 2013; Marcé et al., 2015]. For example, lakes with strong groundwater influences can89

have high allocthonous supplies of DIC and exhibit super-saturation of CO2, particularly in re-90

gions close to the groundwater entry points [Stets et al., 2009]. On the other hand, the high pH91

and alkalinity of hardwater lakes also buffers against large fluctuations in pH [Duston et al.,92

1986; Hanson et al., 2003], leading to smaller amplitudes of both pH and CO2 than exist in93

softwater lakes. Therefore, especially in polymictic hardwater lakes without strong stratifi-94

cation, hypolimnetic CO2 accumulation should be relatively low and uniform throughout the95

year, with the net direction of atmospheric CO2 exchange depending on climate effects on96

solute loading and metabolism. Thus, seasonal patterns of CO2 content in hard-water lakes97

may contrast sharply from those known from dimictic boreal systems.98

Here, we use generalized additive models (GAMs) and sensitivity analysis to quantify99

the effects of climatic and metabolic parameters in regulating intra-annual variability in pCO2100

of hardwater lakes in the sub-humid Canadian interior. Using bi-weekly data for 18 years101

in seven lakes, we sought to determine: 1) When and to what extent metabolic factors (pho-102

tosynthesis and respiration) were regulating lakewater pCO2 and CO2 flux; 2) Whether local103

meteorology and global climatic factors contribute to intra-annual CO2 flux variability, and; 3)104

How consistent the drivers of CO2 flux were among study lakes that varied more than 10-fold105

in size, productivity, and catchment area. Improved understanding of the relative importance106

of biotic and abiotic controls of CO2 flux in hardwater lake types is critical to achieving a107

predictive understanding of the role of freshwater ecosystems in global carbon cycles.108

2 Methods109

2.1 Study sites110

The seven study sites are situated within the Qu’Appelle River catchment (ca. 52,000111

km2) in the northern Great Plains of southern Saskatchewan, Canada (Fig. 1). The region has112

a sub-humid continental climate and is hydrologically reliant on water originating from the113

Rocky Mountains as well as local snowmelt [Bonsal and Shabbar, 2008; Pham et al., 2009].114

The South Saskatchewan River feeds the Qu’Appelle River system via Lake Diefenbaker115

reservoir (D). Water flows eastward from the main reservoir through a chain of lakes includ-116
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ing Buffalo Pound (B), Pasqua (P), Katepwa (K), and Crooked (C) Lakes. Wascana (W) and117

Last Mountain (L) Lakes are situated on tributaries that feed into the Qu’Appelle river system118

upstream of Pasqua Lake. All lakes receive diffuse nutrient sources from agriculture, with the119

wastewater treatment plants from the cities of Regina and Moose Jaw acting as point sources120

of nutrients to Pasqua and eastern basins [Hall et al., 1999]. All lakes are dammed to variable121

extent, and Buffalo Pound and Diefenbaker are actively managed reservoirs. For simplicity,122

we refer to all sites as lakes.123

Median nutrient concentrations are generally elevated (Table 1), including total dis-124

solved nitrogen (TDN) (0.96 mgNL−1) and total dissolved phosphorus (TDP) (106 µg L−1),125

resulting in high algal abundance as chlorophyll a (Chl a) (median 16 µg L−1) and mesotrophic126

to hypereutrophic conditions [Hall et al., 1999; Finlay et al., 2009]. Compared with saline127

lakes worldwide [e.g., Duarte et al., 2008], Qu’Appelle lakes have moderate DIC (median =128

45 mgL−1) and conductivity (median = 1050 µSL−1), but rather high pH (median = 8.8)129

(Fig. 2a). DOC concentrations are moderate (median 11.5 mgL−1). Temporal variation in130

many major chemical variables such as pH is highly synchronous across the sites (Fig. 2b;131

Vogt et al. [2011]) (see Fig. A.1 for intra-annual variability in variables relating to nutrient132

status and lake metabolism).133

2.2 Long-term limnological sampling134

Biweekly limnological sampling of pH, temperature, dissolved oxygen, conductivity,135

salinity, DIC, DOC, Chl a, TDN and metabolic bioassay estimates (primary production, res-136

piration) followed methods outlined in Finlay et al. [2009]. Briefly, pH was measured at the137

lake surface, while oxygen, temperature, conductivity and salinity were recorded at 1 m depth138

using YSI-85 multi-probe meters (YSI, Inc., Yellow Springs, OH). DIC, DOC, Chl a, TDN139

and metabolic bioassay samples used depth-integrated water samples pooled from 2-L Van140

Dorn sampler casts taken at 0.5 m intervals.141

Filtered water (0.45 µm pore size) was used for DIC and DOC analyses using a total142

carbon analyser (Shimadzu 500A), while TDN was measured by photocombustion, both fol-143

lowing Environment Canada protocols [Environment Canada, 1979]. Chl a was determined144

trichromatically from particulate organic matter (POM) collected on 1.2 µm pore Whatman145

GF/C glass fiber filters following Jeffrey and Humphrey [1975] and following extraction using146

80% acetone: 20% methanol, by volume. The wavelength-specific absorbance was quantified147

using a Hewlett Packard model 8452A photodiode array spectrophotometer (1996–2004) or148

an Agilent model 8453 UV-Visible spectrophotometer (2005–2014).149

Metabolic estimates of gross primary production, net primary production and respiration150

were based on changes in oxygen concentration following incubation of whole water samples151

in light and dark glass bottles [Finlay et al., 2009]. All analyses were run in triplicate using152

screened (243 µm mesh), depth-integrated water following Howarth and Michaels [2000]. In-153

cubations occurred for 24 h at ambient lake temperature and under a 12-hour light/dark cycle154

with 450 µmol quanta m−2 s−1, comparable to that recorded in situ at Secchi depth using a155

profiling radiometer [Finlay et al., 2009].156

Sampling occurred primarily from May 1st to August 31st between the hours of 0900157

and 1300, with ca. 5% of sampling dates occurring earlier in spring or later in autumn. This158

long-term ecological research program began sampling in 1994, but for reasons related to data159

availability, we restricted this study to data from either 1996 (most lakes) or 2004 (Pasqua) to160

2014, inclusive.161

2.3 CO2 flux calculation162

In the absence of direct measurements of CO2, we relied on calculated fluxes which163

approximate real values particularly well in high-alkalinity lakes [Abril et al., 2015] (such164

as our study sites), where there are strong chemical relationships between pH and dissolved165
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CO2 [Soumis et al., 2004, R2 = 0.81]. Calculated values are widely applied in the absence166

of measurements, particularly when long-term or broad spatial data are being examined (e.g.167

Duarte et al. [2008]; Seekell and Gudasz [2016])168

The procedure for calculating CO2 fluxes and pCO2 followed Finlay et al. [2009]. Briefly,169

CO2 concentrations ([CO2]) were calculated based on DIC concentrations (depth-integrated170

samples) and pH (surface), with correction for ionic strength and water temperature mea-171

sured at 1 m depth [Stumm and Morgan, 1996]. Partial pressure of CO2 (Pa) was estimated172

using Henry’s Law constant [Kling et al., 1992], and chemically enhanced CO2 flux (mmol173

m−2 d−1) was calculated following Cole et al. [1998]:174

net daily CO2 flux = αk([CO2lake ]− [CO2sat ]) (1)

where: in-lake CO2 concentration for [CO2lake
] refers to surface water; saturation levels175

[CO2sat
] refer to equilibrium with the atmosphere; α is the chemical enhancement of CO2 flux176

at high pH [Hoover and Berkshire, 1969], calculated following Wanninkhof and Knox [1996],177

and; k is piston velocity (cm h−1) following Cole et al. [1998], relating k to wind speed and178

temperature [Wanninkhof , 1992].179

The effect of an alternative piston velocity was evaluated by including the effect of180

lake surface area on piston velocity and therefore CO2 flux in our sensitivity analysis (See181

Statistical methods) [equations for k derived from Table 2, Model B; Vachon and Prairie,182

2013]. We did not have data to account for wind direction, which would plausibly incur errors183

in lake area-based estimates of gas transfer for e.g. Katepwa (North-South orientation) vs184

Pasqua (West-East orientation). Overall, however, the influence of lake area on chemically185

enhanced flux was subsidiary to pH and therefore not considered further in this paper.186

Complete data for calculating CO2 flux were available from 1996 for all lakes except187

Pasqua at which sampling began in 2004. Variables included temperature, pH, conductivity,188

salinity, DIC, wind speed, air pressure and atmospheric pCO2. Observations with any one189

missing variable were omitted, leaving 991 data points for modeling. Hourly wind speed and190

air pressure were acquired from publicly available Environment Canada (EC) data (http:191

//climate.weather.gc.ca/) using Regina stations 4016560 and 4016566 (Climate192

IDs) which had complete records for the study period. Using one weather station location193

for all lakes was deemed acceptable as existing records from other weather stations were194

found highly correlated. Two-week average wind speed was calculated to smooth out brief195

effects of extreme weather events. Monthly averages of air pressure (EC), and Mauna Loa196

atmospheric pCO2 (Earth System Research Laboratory, http://www.esrl.noaa.gov/197

gmd/ccgg/trends/data.html) were used.198

2.4 Statistical methods199

All statistical analyses were performed using R version 3.2.5 [R Development Core Team,200

2016], using packages mgcv [Wood, 2011, 2017] and pse [Chalom and de Prado, 2016]. R201

code is available at https://github.com/simpson-lab/jgr-co2-flux.202

Our analytical approach follows a few key underlying considerations. Since CO2 flux203

was estimated from water chemistry and physical variables and not measured directly, we204

avoided any approach that would circularly include these ’calculation variables’ as metabolic205

or climatic proxy predictors of CO2 flux. Furthermore, we were specifically interested in206

which of these calculation variables correlate the most with CO2 flux in our study region. In207

this regard we note that, although the real, rather than estimated, relationship between these208

variables and CO2 flux is unknown, this step can identify which variable is key to proxy CO2209

flux in our region (and conversely, which variables are not). Therefore, we first quantified210

the influence of the calculation variables on estimated CO2 flux (’influence’ here used in the211

regression sense of changes in x influencing estimates of y, rather than a directional causal212
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sense). Secondly, we regressed our metabolic and climatic variables of interest against the213

variable that accounted for most of this variation. The second step allowed us to use a mea-214

sured, rather than estimated, response variable, reducing the amount of imprecision in our215

regression values. We were then able to relate these values back into CO2 flux estimates using216

the results from the first step, thereby avoiding presenting misleadingly precise results for CO2217

flux itself.218

2.4.1 Variable selection219

Metabolic variables were selected from various estimates of lake production and respi-220

ration to achieve the greatest availability over the data period. In the case of highly correlated221

variables, we modelled only a single variable, so in our case, respiration (R) was selected over222

net and gross primary production, whereas TDN was retained over TDP (at most times at most223

study sites, N limitation exceeds P limitation [Patoine et al., 2006]). Ultimately, five metabolic224

variables were selected for modeling, including in situ O2 (respiration/photosynthesis), DOC225

(potential effects on respiration), Chl a (algal biomass or production), R (respiration), and226

TDN (nutrient availability). Chl a, TDN, and DOC were log10-transformed to approximate a227

normal error distribution.228

To capture the major climatic processes most likely to influence lake CO2 via solute and229

nutrient loading (hydrological processes, evapotranspiration), we included both broad drivers230

of intra-annual climate and more local, instantaneous proxies for evaporation-precipitation231

balance. Variables included the Southern Oscillation Index (SOI) and Pacific Decadal Os-232

cillation (PDO), metrics of climate systems which strongly influence regional precipitation233

and temperature patterns, either alone or in combination [Bonsal and Shabbar, 2008; Pham234

et al., 2009; Shabbar and Yu, 2012]. Both indices were included as three-month averages,235

six months prior to sample collection, to account for the lags between the regions of ob-236

servation and effect [Pomeroy et al., 2007; Shabbar et al., 2011]. Monthly values were ob-237

tained from the National Oceanic and Atmospheric Administration (NOAA) (http://www.238

cpc.noaa.gov/data/indices/soi) and the Joint Institute for the Study of the At-239

mosphere and Ocean (JISAO) (http://research.jisao.washington.edu/pdo/240

PDO.latest). Because regional precipitation is highly localized (lake-specific; Vogt et al.241

[2011]) and weather stations were not adjacent to our study sites, we did not attempt to use242

data from weather stations to estimate rainfall. Instead, Standardized Precipitation Evapotran-243

spiration Index (SPEI) values for each site (0.5 degree spatial resolution) were obtained from244

the Consejo Superior de Investigaciones Cientficas (CSIC) Global SPEI database (http:245

//sac.csic.es/spei/database.html) [Vicente-Serrano et al., 2016]. Index values246

were calculated using a two-month ’memory’ (autocorrelation) to account for temporal varia-247

tion in soil drying and hydration.248

2.4.2 Sensitivity analysis249

Given the absence of direct measurements, we analysed data to select the best proxy of250

CO2 in our climatic-metabolic model by simulating the sensitivity of calculated CO2 flux to251

changes in pH, conductivity, salinity, water temperature, DIC, wind speed, atmospheric pCO2,252

and local air pressure. A sensitivity analysis was used for this purpose because it shows the253

magnitude of individual variable contributions to estimate CO2 flux for multiple combinations254

of variables and values. Further, this method allows us to perform multi-step calculations255

while controlling for underlying data correlations [Chalom and de Prado, 2015].256

Differences among lakes in the relative contribution of variables to calculated CO2 flux257

were tested by comparing an analysis conducted for all lakes combined, with those for each258

lake individually. Specifically, we used a latin hypercube sampling (LHS) approach [Chalom259

and de Prado, 2015] and generated realistic data variations of all variables for each lake based260

on their observed variation over the sampling period (n = 500 per simulation). Rank corre-261

lations were selected, rather than a linear analysis among variables, to account for potential262
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nonlinear relationships between predictors and responses. The output metric (partial rank cor-263

relation coefficient: PRCC), for any one variable, controls for the effect of all other variables264

by reflecting the correlation between the unexplained part of the outcome, given all other vari-265

ables, and the unexplained part of one variable, given all other variables (i.e., a correlation266

between residuals).267

2.4.3 Generalized additive models268

pH was the strongest correlate with calculated CO2 flux based on sensitivity analysis (see269

Results) and, therefore, was carried forward to evaluate the effects of selected metabolic and270

climatic variables on CO2 flux. Here, we applied generalized additive models (GAM), which271

account for nonlinear relationships between predictors and responses [Hastie and Tibshirani,272

1990; Wood, 2017] (Section 2.4.4). GAMs also allowed us to include Year and Lake as random273

effects to account for between-lake and inter-annual variations known to be important [Finlay274

et al., 2009, 2015]. The resolutions of all other predictors also link with the resolution of275

variability they are able to explain: e.g., biweekly predictors can explain pH variation at a276

within-month scale, while monthly predictors can only explain pH variation occurring at a277

between-month scale. Temporal structure within the climatic-metabolic model was visualised278

by plotting term contributions to pH against time.279

The first model, which evaluated the degree to which lakes differed in their relationship280

between CO2 and pH was formulated as follows, for y = CO2 flux,281

y = β0 + f(pH) + flake(pH) + αlake + γyear + ε (2)

Here, the effect of pH was modelled both globally (f(pH)) and by lake (flake(pH), while282

terms α and γ were random effects of lake and year, respectively, and εwas the error term. The283

global and lake-specific effects of pH were identified via different orders of quadratic penalties284

on their respective basis expansions. The global function of pH (f(pH)) was subject to the285

usual second-order penalty whereby the wiggliness penalty was on the second derivative of a286

fitted spline. First-order penalties were used for the lake-specific splines so that the penalty287

applied to departure from a flat or zero function. This approach had the effect of making288

each flake(pH) represent the departure of each lake from the global pH effect. Smoothness289

parameters for f and flake were chosen using restricted maximum likelihood (REML) selection290

[Wood, 2011]. Lake-specific effects of pH on CO2, (flake(pH)), were only retained when they291

were assessed to be significantly different from a zero (flat) function. Therefore, lake-specific292

splines retained reflect regional heterogeneity (objective 3) between the study sites. pH was293

selected for a combined metabolic and climatic GAM to explore sub-annual controls of CO2294

flux.295

The second model, which quantified the influence of climatic and metabolic variables296

on pH, followed the principles outlined above for the first model. For y = pH,297

y = β0 +

J∑
j=1

[f(xj) + flake(xj)] + f(PDO,SOI) + αlake + γyear + ε (3)

where: xj is the jth metabolic (TDN, DOC, Chl a, O2) or climatic (SPEI) covariate, f(PDO,SOI)298

is a 2-D tensor product spline combining the main and interactive effects of PDO and SOI;299

α and γ are random effects of lake and year, and; ε is the error term. As above, the unique ef-300

fects of the xj for each lake were incorporated through inclusion of separate difference splines301

for each lake (flake(xj)) employing first-order wiggliness penalties. REML smoothness selec-302

tion was used as described above. Where model terms were marginally significant, likelihood303

ratio tests were used to determine whether a model including the terms was justifiable.304
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Preliminary runs suggested that co-linearity between DOC and TDN was sufficient to305

confound results, and argued for retaining only one predictor (DOC), based on both internal306

model Wald tests and Akaike and Bayesian Information Criteria (AIC; BIC). However, due to307

TDN being a significant correlate absent from the final model, the model replacing DOC with308

TDN is also used in this paper to portray the relationship between TDN and pH.309

3 Results310

3.1 The sensitivity of CO2 flux to variables used in its calculation311

Sensitivity analysis showed that pH explained the greatest amount of variation in CO2312

flux (PRCC = -0.96) followed by DIC (PRCC = 0.51) for all lakes (Table 2, Fig. B.1). This313

sequence was also retained in the simulations for individual lakes; however, DIC was more314

influential in some lakes (B, C, D, L) than in others (K, P, W). Overall, the importance of DIC315

was small (Table 2) and sensitive to which simulation data were used for analysis (not shown).316

Generalized additive modeling echoed the results of the sensitivity analysis and showed317

that pH was the main correlate of CO2 flux (Fig. 3). This model explained 97% of deviance in318

CO2 flux, while the use of DIC as an additional term only explained a further 1% of variation319

(and an equivalent model with DIC, not pH, explained only 30% of flux variation; not shown).320

Lakes were predicted to in-gas atmospheric CO2 above a pH of 8.8, the median pH over321

the whole data set, while no net atmospheric exchange occurred around pH 8.7. Generally322

more productive lakes (K,P,W) were significantly different from less productive sites (B, C,323

D, L) based on GAM analysis of the relationship between pH and CO2, primarily at the high324

and low ends of pH (<10% of all observations). These groups of lake also differed in the325

extent to which DIC content tended to influence sensitivity analyses (Table 2).326

3.2 Metabolic and climatic regulation of pH327

GAM analysis explained 43% of historical deviance in pH, mainly due to climatic and328

metabolic parameters (Figs 4 – 6). Significant predictors of pH included Chl a (p < 0.001),329

PDO∗SOI (p < 0.001), Lake + Year (p < 0.001), oxygen (p = 0.0108), DOC (p = 0.0137) and330

SPEI (p = 0.0122). The only variable for which individual lake splines were significant was331

Chl a. In all cases, R was insignificant and removed from the model. The ranges of pH over332

which the metabolic and climatic variables exerted control were variable, and in decreasing333

order included PDO∗SOI (ca 8.5-10), Chl a (8.5-9.6), oxygen (8.6-8.9), DOC (8.75-8.9), and334

SPEI (8.9-9.1), approximately (see uncertainties at the edge of prediction: Figs 4, 6). Using335

all measured combinations of our predictors, i.e. the empirical data, our model pH predictions336

encompass a range from 7.8 to 10 (± errors), which does not capture the full range of observed337

pH (7 to 10.9) (Figs C.1, C.2).338

Concentrations of Chl a were correlated positively with pH, with low algal abundance339

(< 5− 13 µg L−1) occurring when depressed pH correlates with out-gassing of CO2 when all340

other predictors were held at their mean (Fig. 4). Results from the two small, shallow lakes341

(W, B) were significantly different from other basins in that both increases and declines in342

Chl a had comparatively strong relationships with pH. In general, pH increased with oxygen343

saturation, with CO2 in-gassing at supersaturated oxygen concentrations >9− 10 mgL−1).344

CO2 efflux occurred only at low oxygen concentrations (<5% of all observations which were345

lower than ca 5 mgL−1 when all other predictors held at their mean). Finally, DOC was346

positively correlated with pH, particularly in the range where elevated pH favoured influx of347

CO2.348

In the alternative model where DOC was replaced with TDN, TDN had a slight pos-349

itive relation with pH up to concentrations of ca 1100 µgNL−1 above which pH declined350

consistently (Fig. 5). Uncertainties in the effect of TDN on pH were high at both ends of351

–8–



Confidential manuscript submitted to Journal of Geophysical Research: Biogeosciences

the range due to low observation frequency; however, extremely high values of TDN (>352

2000− 6500 µgNL−1) co-occurred with pH values that correspond with CO2 efflux.353

Broader-scale climate variables PDO and SOI had stronger relationships with pH than354

did SPEI. The highest pH values were associated with the most negative SOI and positive PDO355

(Figs 4 a-c), which typically indicate warm and dry conditions. In contrast variation in SPEI356

had a limited effect on pH (ca 0.2 units) and was associated with above-mean pH at the low and357

high end of its range (Fig. 6). Low pH was particularly common when PDO was low and wet358

conditions predominate [Bonsal and Shabbar, 2008]. PDO had a more complex multi-modal359

relationship with pH than did SOI, which was more linear (Figs 4 b-c). For a given PDO,360

increasing SOI shifted the position of the spline. In general, SOI had a positive relationship361

with pH except at high PDO when high pH occurred also at low SOI values (Figs 4 b-c).362

Overall, the range in climatic index values during the observation period was similar to that363

recorded during the past century (PDO mostly within -2,2; SOI mostly within -2.5, 2.5, SPEI364

mostly within -2,2).365

Consistent long-term intra-annual trends were apparent for the metabolic variables Chl a,366

and oxygen (Fig. 7), but not DOC or the climatic variables SPEI and PDO∗SOI. Chl a in-367

creased in positive effect on pH over the summer in most lakes except during the clear-water368

phase in June. Below-average pH at low Chl a occurred consistently at the least productive369

site, Lake Diefenbaker. Oxygen effects in four lakes (C, K, B, D) were most negative towards370

the end of the summer.371

4 Discussion372

Given the importance of climate and ice-cover duration in determining annual mean pH373

and CO2 flux in these hard-water lakes [Finlay et al., 2015], we sought to determine whether374

metabolic factors would emerge as a driving factor at an intra-annual timescale. While we375

found similar controls also at sub-annual timescales (high coherence within the region, pH376

the most significant predictor of CO2) (Table 2, Fig. 3), metabolic controls were important377

in determining the balance between high likelihoods of influx (pH>8.8) and efflux (pH<8.7)378

of CO2 (Fig. 4). Lake metabolism, as measured using algal abundance (Chl a), was a key379

parameter controlling whether lakes acted as C sources or sinks within any given year.380

4.1 The role of lake metabolism in directing pH and CO2 flux381

There was strong evidence for metabolic control of pH and thereby CO2 flux both at382

the high and low ends of a gradient of nutrient concentration when either primary production383

was insufficient to sequester CO2 or it seemed offset by high levels of inferred respiration.384

Further, metabolic effects exhibited a strong intra-annual pattern, stressing the importance of385

short term controls of pH and thereby CO2 flux in these lakes in calculating the annual CO2386

budget.387

Elevated algal abundance increased the likelihood of net CO2 uptake from the atmo-388

sphere. Specifically, we found that CO2 under average conditions (all other predictors at389

mean) was in-gassing at moderate to high primary production (Chl a > 15 µg L−1) while390

lower levels of productivity (Chl a 5− 10 µg L−1) could result in a net heterotrophic state391

and CO2 efflux. Such low productivity values were found most frequently in the mesotrophic392

Lake Diefenbaker, while strongly positive relationships between pH and Chl a occurred often393

in the most shallow lakes (Wascana, Buffalo Pound; Fig. 4). In general, the observed Chl a394

concentrations needed for net CO2 release were low (7− 15 µg L−1) relative to those found395

in other eutrophic lakes where out-gassing may predominate even under the most productive396

conditions (Chl a > 40 µg L−1) [Huttunen et al., 2003; Reis and Barbosa, 2014], although397

outgassing was predicted even in our sites at similar algal production provided other predic-398

tors were set to values favouring outgassing (e.g. low oxygen, high TDN).399
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Both Chl a and pH increased through the summer in most lakes suggesting a pro-400

gressive increase in the importance of metabolic controls. However, these trends were not401

monotonic, particularly in the more productive lakes. In early summer, the more productive402

lakes have consistent clear-water periods [Dröscher et al., 2009] caused by strong zooplank-403

ton grazing on phytoplankton, thus increasing pCO2 and subsequently decreasing pH (Fig. 7).404

Conversely, in late summer, the more productive lakes exhibit reduced oxygen concentrations405

(<5 mgL−1) indicative of increased respiration of organic material, which favours release of406

CO2 to the atmosphere (Fig. 7). More intensive evaluation of fall metabolism is required to407

establish whether this trend continues through to ice formation in late October or November.408

Similar to results of annual mean data [Finlay et al., 2009], rising DOC content tended409

to co-occur with increasing pH at moderate to high DOC levels (DOC: 5− 25 mgL−1). These410

patterns are contrary to studies from boreal lakes which tend to show that DOC mineralization411

increases pCO2 and reduces pH [Balmer and Downing, 2011]. Although speculative, the ob-412

served positive relationship between pH and DOC may reflect recalcitrant DOC which is not413

respired [Ostapenia et al., 2009], autochthonously derived DOC during high primary produc-414

tion [Søndergaard et al., 2000], and/or a positive correlation between DOC and nutrient influx415

[Osburn et al., 2011]. The latter two are most likely given the positive correlation between416

TDN and DOC in our study lakes, however further research is required to distinguish among417

these explanations.418

The unimodal relationship of TDN and pH (peak ca. 1100 µgNL−1) suggests that there419

is a limit to the fertilising effect of nutrients on primary production and in turn pH. Such a limit420

may reflect a consistent rise in bacterial decomposition of organic matter along the produc-421

tion gradient, leading to a paramount effect of respiration under highly eutrophic conditions422

[Hollander and Smith, 2001]. In our case, TDN itself may be directly utilised by heterotrophs,423

as most (>80%) dissolved N in these lakes is in organic forms of TDN not available to au-424

totrophs [Bogard et al., 2012]. Consistent with this idea, we note that addition of organic N425

(as urea) to mesocosm experiments in Wascana Lake increased respiration and decreased pH426

corresponding with CO2 efflux [Bogard et al., 2017]. Finally, we infer that the negative cor-427

relation between high TDN and pH does not reflect a change in the nutrient limitation status428

of the lakes, as only Diefenbaker and to a lesser extent Buffalo Pound show evidence of P429

limitation [Vogt et al., 2015; Quiñones-Rivera et al., 2015] and these sites generally exhibit430

low TDN values relative to other, more definitively N-limited systems [Leavitt et al., 2006;431

Patoine et al., 2006].432

While we observed a predictable positive relationship between pH and O2 concentra-433

tion when oxygen was below saturation, the relationship reversed direction when waters were434

super-saturated with oxygen (Fig. 4b). We speculate that there are times when there may be si-435

multaneous supersaturation of oxygen and CO2 thereby decoupling the relationships between436

oxygen and pH, as observed in other hardwater systems where excess allochthonous carbon437

coincides with high primary production [Stets et al., 2009; McDonald et al., 2013].438

4.2 Climatic regulation of pH439

The strength of the relationship between climatic variables and pH was comparable to440

that of metabolism and pH (Figs 4, 6), a pattern which suggests that climatic mechanisms441

may also influence intra-annual variation in regional CO2 flux. For example, dry and warm442

conditions (very high PDO and very low SOI) as well as high drought index values were443

associated with elevated pH and increased concentrations of base cations in these and other444

lakes lakes [Pham et al., 2009; Lake, 2011]. Similarly, this pattern is consistent with find-445

ings of Finlay et al. [2015] who demonstrated that spring and summer pH is elevated during446

years when short duration of ice cover reduces under-ice respiration and favours increased447

pH in spring and summer. The most likely drivers of climatic effects on pH are increased448

base cation concentrations due to evaporative concentration [Evans and Prepas, 1996; Pham449

et al., 2009], elevated residence time [Knoll et al., 2013], reduced allochthonous DIC loads450
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due to longer transit times [Stets et al., 2017], and higher reliance on groundwater contribu-451

tions [Lake, 2011]. However, further research will be required to better refine these possi-452

bilities, including spatial studies relating geology, landscape position, external loading and453

groundwater supply to seasonality of lake chemistry.454

Despite strong and significant results from our modelling exercise, our statistical ap-455

proach captured only ca. 43% of the deviance in pH, leaving a considerable proportion to456

be accounted for by other factors. Because model residuals were random and normal, they457

provided little indication of model deficiencies. In principle, model prediction might be im-458

proved through distinction of DOC providence via spectrophotometric or compound-specific459

analyses to better estimate its effect on respiration [Koehler et al., 2012], while quantification460

of physico-chemical processes such as convection and mixing may be important in identify-461

ing additional controls of pH, such as seen elsewhere [Maberly, 1996; Morales-Pineda et al.,462

2014; Liu et al., 2016]. Thirdly, the use of more finely resolved taxonomic data (e.g., algal463

groups) in place of coarse metrics of planktonic metabolism (Chl a, R) may help refine how464

the importance of biotic controls varies along long limnological gradients [Felip and Cata-465

lan, 2000; George and Heaney, 1978; Zhang et al., 2010]. Finally, we have not been able to466

account for alkalinity affecting the buffering capacity and thus the lakes’ responsiveness in467

pH to changes in metabolic CO2. However, the lack of overall correlation between pH and468

metabolic covariates suggests that alkalinity changes should be investigated for their potential469

contribution to pH and CO2 flux.470

4.3 Regional coherence and implications for upscaling CO2 fluxes471

Predicting CO2 fluxes in these hard-water systems was simplified by the fact that DIC472

concentrations varied little across the lakes, and that all lakes behaved similarly with regards to473

metabolic and physical relationships with pH over broad spatial scales. While the lakes varied474

substantially in salinity and conductivity (Fig. 2), these parameters had relatively low impact475

on CO2 fluxes in their respective ranges (Table 2). Conversely, while DIC concentrations476

are predicted to have substantial effects on atmospheric CO2 exchange in other lake regions477

[Cumming et al., 1995; Doctor et al., 2008; Duarte et al., 2008], in our study DIC levels were478

comparatively low, and also correlated weakly and negatively with changes in pH (p < 0.001,479

R2=0.014) which implied an absence of negative effects of high DIC on CO2 influx at high480

pH.481

We found an unexpectedly strong effect of lake morphology on the role of algal abun-482

dance (as Chl a) as a determinant of pH, with the effect of Chl a being much greater in very483

shallow Buffalo Pound and Wascana lakes (<4 m mean depth) than deeper lakes, particularly484

at very high pH values (Fig. 4). We speculate that shallow lakes are more likely to exhibit485

whole-lake responses to photic-zone metabolism, and may have less vertical structure than486

even deep polymictic lakes (Zhang et al. [2010], but see George and Heaney [1978]). Fortu-487

nately, most prairie lakes are of a similar depth, many being shallow [Last, 1989], suggesting488

that variation in morphology will not unduly affect efforts to estimate regional CO2 fluxes489

[Finlay et al., 2015]. Overall, the high level of coherence among basins in terms of high pH490

and moderate DIC suggest that many lakes will act as CO2 sinks during much of the sum-491

mer, provided they are moderately to highly productive (> 15− 20 µg L−1 Chl a) and are not492

under extreme (organic) TDN loads.493

Metabolic control of CO2 flux in these hardwater lakes does not appear to be as strong as494

that observed in boreal or softwater regions where microbial metabolism of DOC [Sobek et al.,495

2005; Lapierre and del Giorgio, 2012] or photosynthesis [Maberly, 1996; Reis and Barbosa,496

2014] regulates pCO2, albeit with variable allochthonous contributions of respired or other-497

wise derived DIC [Weyhenmeyer et al., 2015; Bogard and del Giorgio, 2016]. These results fit498

within the larger matrix of lake types along gradients of DIC, DOC, nutrients and alkalinity,499

and suggest that moderately hardwater lakes are more likely to capture atmospheric CO2 at a500

given level of productivity than would dilute lakes [Reis and Barbosa, 2014], those with high501

–11–



Confidential manuscript submitted to Journal of Geophysical Research: Biogeosciences

DOC loads [Huttunen et al., 2003], or hardwater systems with chronic oversaturation of DIC502

[Marcé et al., 2015]. Further, because such systems often co-incide with intensively fertilized503

agricultural regions, there exists the possibility that many of these systems will fall below the504

global average estimate of lake CO2 flux [Raymond et al., 2013].505

5 Conclusions506

Based on advanced time series analysis using GAMs, we found that both metabolic and507

climatic factors strongly influenced factors related to pH and that variation in DIC was of only508

secondary importance in affecting CO2 content. Overall, a modest degree of eutrophication509

was required for high rates of CO2 uptake from the atmosphere and some less productive510

lakes exhibited a release of CO2 from surface waters. These agricultural areas often exhibit511

high allochthonous loads of organic carbon and nitrogen which are likely to fertilize the lake.512

This increases the likelihood of CO2 influx, but the balance may switch in favour of respiration513

at extreme nitrogen loads. Overall, climate appeared to have an effect on gas exchange mainly514

during extremes, such as regional drought, when evaporative concentration of base cations and515

elevated pH may favour regional influx of CO2 into lakes. These results aid in our ability to516

understand and predict how future human-mediated changes to nutrient loading and climate517

change will impact carbon cycling in lakes.518

6 Tables, and figure captions519

Table 1. Summary data of study lakes, showing median, minimum-to-maximum (in parentheses) values of

monitoring data over the sampling period, as well as mean depth and residence time.

520

521

Lake Residence

time (yr)

Mean

depth (m)

TDN

( µgNL−1)

Chl a

( µg L−1)

DOC

( mgL−1)

TDP

( µg PL−1)

B 0.7 3 491 (218-1350) 20.1 (1.5-319) 6.1 (0.5-31) 23 (9-132)

C 0.5 8 920 (450-2090) 18 (0-237) 12 (0-41) 126 (16-650)

D 1.3 33 401 (107-1440) 4.7 (0.8-26) 4.8 (0-29) 9 (0.4-295)

K 1.34 14 1152 (418-2390) 21 (1.5-117) 12 (3.7-37) 159 (40-690)

L 12.6 8 999 (482-1510) 13 (2.3-49) 13 (0-82) 31 (14-470)

P 0.71 6 1420 (171-3100) 22 (1.2-287) 12 (0-56) 162 (5-662)

W 0.7 1.5 1309 (600-6400) 27 (2.2-309) 16 (4.8-53) 318 (33-830)

Fig. 1: The seven study sites lie along the Qu’Appelle River (SK, Canada) flowing west526

to east, with the exception of Wascana (south tributary) and Last Mountain (north tributary).527

Fig. 2: a: Box plots for limnological data used to calculate carbon dioxide flux in the528

lakes, showing medians, upper and lower quartiles, 1.5×inter-quartile ranges, and ’outliers’.529

b: Major patterns of annual variation in pH in all lakes, based on a generalised additive model530

of pH by Lake, Year, and Day of Year. Rug: annual means of pH observed over time.x531

Fig. 3: GAM splines for pH with lake splines significantly different (see section 2.4.3)532

from the global spline indicated by color/hue and linetype. Dotted lines: means of y and x;533

Shaded area: Middle 90% of all observations. Rug: Data points534

Fig. 4: a-c: GAM splines for significant metabolic variables. Dotted lines: means of y535

and x; Shaded area: Middle 90% of all observations. Rug: Data points. a: GAM splines for536

chlorophyll a, with lakes with significantly different splines to the global spline (see section537

2.4.3) indicated by color/hue and linetype. b: GAM spline of oxygen, with standard errors538

indicated by shading. c: GAM spline of DOC, with standard errors indicated by shading.539
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Table 2. Partial Rank Correlation Coefficients (PRCCs) following Latin Hypercube sensitivity analysis for

all variables and all lakes (left panel) and the most important two variables for individual lakes (right panel).

522

523

Variable PRCC (all lakes) Lake PRCC (pH) PRCC (DIC)
pH -0.96 Last Mountain -0.98 0.74
DIC 0.51 Crooked -0.99 0.69
Temperature -0.28 Diefenbaker -0.99 0.68
Conductivity -0.26 Buffalo Pound -0.99 0.65
Wind 0.20 Pasqua -0.99 0.64
Salinity 0.10 Katepwa -0.99 0.57
Air pressure 0.10 Wascana -0.99 0.56
Air pCO2 -0.09

Table 3. Summary of the climatic-metabolic model of pH, showing the estimated effects of the predictors.

EDF=estimated degrees of freedom, DF=degrees of freedom. Deviance explained: 43.2%, n=991.

524

525

Predictor spline EDF DF chi2 p value

Chlorophyll a (global) 0.979 9 134.366 � 0.0001

Chlorophyll a (Katepwa) 0.000159 4 0 0.47556

Chlorophyll a (Last Mountain) 0.0000767 4 0 1

Chlorophyll a (Buffalo Pound) 1.80 4 11.168 0.01886

Chlorophyll a (Crooked) 0.277 4 0.433 0.22987

Chlorophyll a (Diefenbaker) 0.0380 4 0.05 0.28051

Chlorophyll a (Wascana) 2.65 4 66.947 � 0.0001

Chlorophyll a (Pasqua) 0.000168 4 0 0.49175

DOC 1.40 9 39.519 0.01285

Oxygen 3.07 9 28.417 0.00772

PDO*SOI 10.8 24 567 � 0.0001

SPEI 1.41 2 16.342 0.01158

Lake*Year 105 128 532.24 � 0.0001

Fig. 5: GAM spline for TDN in the alternative model without DOC. Dotted lines: means540

of y and x; Shaded area: Middle 90% of all observations. Rug: Data points. Standard errors541

are indicated by shading.542

Fig. 6: a-c: GAM interactions of PDO and SOI. a: Heatmap with data points. Dashed543

lines indicate cross sections for b-c, which show GAM splines for pH for selected combina-544

tions of SOI (b) and PDO (c) values. Missing line segments reflect uncertainties in prediction.545

d: GAM spline of SPEI, with standard errors indicated by shading. Rug: Data points.546

Fig. 7: Contributions of each predictor to pH summarised over the months of highest547

data availability, averaged across lakes for weather and climate indices which were homoge-548

nous through the study region. Box plots show medians, upper and lower quartiles, 1.5×inter-549

quartile ranges, and ’outliers’. Shaded area: ± 0.05 regions to aid comparison of magnitudes550

across predictors.551

Fig. A1: Intra-annual variability expressed as median absolute deviation (i.e. the median552

of the absolute deviations from the median) of key metabolic and/or nutrient status variables553

over the LTER period over the months of most frequent observations (May-September). The554

data are superimposed such that the lakes with the lowest variability appear toward the centre555

of the figure, and lakes with higher variability contain the variability of the more central lakes556

plus the additional value indicated by the colouring.557
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Fig. B1: The relationship between calculated carbon dioxide flux and simulated data558

sets (N=500) of input variables for sensitivity analysis.559

Fig. C1: R output for main model diagnostics.560

Fig. C2: Measured vs predicted pH over time in the study sites, displayed as monthly561

means over the months of the most frequent observations.562
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Figure 1. The seven study sites lie along the Qu’Appelle River (SK, Canada) flowing west to east, with the
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A: Summary data for all lakes588
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B: Simulated relationships between predictors and CO2 using sensitivity analysis589
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Figure B.1. The relationship between calculated carbon dioxide flux and simulated data sets (N=500) of

input variables for sensitivity analysis.
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C: Model summaries and diagnostic plots592
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