1	The present is the key to the past, but what does the future hold for the
2	recovery of surface waters from acidification?
3	
4	R.C. Helliwell ^a , and G.L. Simpson ^b
5	
6	^a Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
7	^b Environmental Change Research Centre, University College London, Department of
8	Geography, Pearson Building, Gower Street, London, WC1E 6BT, UK
9	
10	Corresponding author. r.helliwell@macaulay.ac.uk, tel: 0044 (0)1224 395152, fax:
11	0044 (0)1224 395010
12	
13	
14	Abstract
15	
16	Analogue matching was used to identify close modern water quality analogues for a
17	set of 59 acid-sensitive lakes in the Galloway region of south west Scotland. Modern
18	analogues were identified that closely matched the pre-disturbance conditions of these
19	lakes using simulated water quality parameters from the MAGIC (Model of
20	Acidification of Groundwater in Catchments) model for key years from 1860-2100.
21	The lakes were matched with hydrochemical samples from a large spatial data set in
22	the UK. For the majority of the 59 lakes, several close modern analogues were
23	identified from the training set for specified years. The close modern analogues for
24	the reference year (1860) were predominantly located in north-west Scotland, an area

25 of low acid deposition and high-status water quality. A clear recovery in the regional

surface water acid neutralising capacity (ANC) was simulated by MAGIC in 2015 compared to the situation in 1970 at the height of acid emissions. Predicted trends in surface water chemistry from present day to 2015 indicate some improvement in water quality with c. 23±0.97 % recovery towards pre-acidification (1860) ANC for the region.

6

7 Output from the MAGIC model was used with the analogue technique to investigate 8 the combined influence of future changes in deposition and climate on 9 biogeochemical processes and water quality at the Round Loch of Glenhead (RLGH). 10 Our results demonstrate that pre-acidification restoration targets will not be achieved 11 by simply reducing acid deposition, and climate change will further confound the 12 beneficial effects of deposition reductions. Results for 2015 and beyond show that 13 modern analogues for these periods were predominantly concentrated in North Wales, 14 with some in north-west Scotland, Galloway and the Lake District. Evidence from 15 model simulations and modern analogues indicate that more stringent measures to 16 further reduce acid deposition and combat climate change in the future are necessary 17 if the majority of lakes in the Galloway region are to be restored to their pre-18 acidification target chemistry. The identified analogues for selected periods may be 19 used to study wider ecological conditions to better define reference conditions and 20 future recovery trajectories. That modern analogues were identified for the simulated 21 chemistry in 2100 at RLGH suggests that unprecedented chemical conditions are 22 unlikely to be observed as a result of future climate change.

23

24 Keywords

Acidification, chemical recovery, analogue matching, climate change, Galloway
 region

3

4 **1. Introduction**

5

6 Surface water acidification was recognised as a major environmental problem in many 7 parts of Europe and North America during the 1970s and 80s. This recognition has 8 resulted in national and international action to reduce the emissions of acidifying 9 pollutants, which have resulted in a decline in acid deposition. In response, acidified 10 surface waters have begun to show signs of chemical recovery, with declining 11 concentrations of sulphate (SO₄) and increasing pH and acid neutralising capacity 12 (ANC) (Skjelkvåle et al., 2005). Surface water recovery is defined as being a set of 13 conditions whereby the hydrochemistry has returned to its pre-acidified status or to 14 some status that no longer poses a risk to biotic integrity.

15

16 This definition is in line with the EU Water Framework Directive (WFD) (European 17 Commission, 2000) that commits Member States to achieve good surface water status 18 by the year 2015. In support of future re-negotiation of emissions agreements to meet 19 these targets, the Model of Acidification of Groundwater in Catchments (MAGIC, 20 Cosby et al., 2001) is one of the key models used to assess time scales of recovery 21 into the future at a European scale (UNECE 2008). The large scale application of 22 dynamic biogeochemical models such as MAGIC have been instrumental in gauging 23 the potential compliance of water bodies to chemical and biological targets in 2015 24 according to the WFD relative to pre-acidification conditions (Helliwell et al., 2003).

25

1 While MAGIC is effective in predicting recovery of soil and surface waters in 2 response to given scenarios of acid deposition (Wright et al., 2005), there are few 3 studies that have investigated the effects of climate change on chemical recovery 4 (Wright et al., 2006). Most dynamic model applications operate on the basis that, 5 apart from changes in acid deposition levels, other factors remain constant. Recently, 6 concerns have been raised regarding the exposure of aquatic ecosystems to a wide 7 variety of impacts and confounding factors such as global climate change (Skjelkvale 8 and Wright, 1998), land-use change, physical manipulation, and other pollutants such 9 as toxic metals (Rose and Rippey, 2002). Confounding factors may be defined as 10 environmental factors that alter the relationship between acid deposition and runoff 11 acidity over time (Evans, 2005). There is a high probability that over the next few 12 decades climate will change and have a confounding effect on chemical recovery, but 13 the rate and extent of change will be dependent on the pollutant and the sensitivity of 14 the ecosystem in question (Posch, 2002). Numerous climate-related effects on surface 15 water chemistry have been identified but few dynamic model applications account for 16 simultaneous changes in climate and deposition. These climate driven processes can 17 affect surface water chemistry, directly as well as indirectly through changes in 18 vegetation and soils of the terrestrial catchments (Wright et al 2006; Evans, 2005). 19 While the mechanisms behind these changes are not specifically incorporated in 20 current versions of acidification models due to a number of complex interactions, 21 Wright et al (2006) conducted a series of sensitivity trials to explore the relative 22 importance of various climate-induced changes on runoff acidity using the MAGIC 23 model. The approach adopted by Wright et al (2006) forms the basis for the climate 24 change assessment discussed here.

25

1 Palaeoecological information has been effectively used in the validation of MAGIC 2 simulated water quality from pre-acidification times (Battarbee et al 2005) thereby 3 increasing the confidence in the predictive capability of the model. The main 4 challenge of many techniques that aim to reconstruct past chemical and biological 5 conditions is the lack of information regarding what the appropriate reference state of 6 surface waters should be as there are invariably few, if any, reliable records that 7 predate the onset of change. However, significant progress in using palaeoecological 8 data to define pre-acidification conditions has been made through identifying modern 9 analogues, which are studied to investigate pre-impact conditions in surface waters 10 (Flower et al., 1997; Simpson et al., 2005). MAGIC-simulated hydrochemical 11 parameters can be compared with hydrochemical data from a modern spatial data set 12 with that same set of parameters using the analogue matching technique to identify so-13 called modern analogues for past or future conditions. These modern analogue lakes 14 may then be studied to gain understanding of components of the ecosystem that are 15 difficult to model or for which data are currently unavailable. Modern analogues are a 16 rich source of ecological information upon which to base future restoration or 17 recovery targets (e.g. Simpson et al 2005). Furthermore, if no modern analogues exist 18 for future simulated conditions, this suggests environmental conditions may in the 19 future move beyond natural environmental ranges, with unknown consequences (e.g. 20 Stralberg et al 2009). One advantage of a dynamic model such as MAGIC over 21 palaeoecological approaches is that the models can be used to provide forecasts or 22 simulations of future conditions as well as historical simulations (hindcasts). 23

By combining output from the MAGIC model with the analogue matching approach
there is potential to identify reference lakes from the modern water chemistry dataset

1 to guide the decision making process of environmental managers based on water 2 quality standards of reference lakes. As few, if any, long-term monitoring data are 3 available for the pre-acidification status of acidified lakes, modern analogues and 4 palaeoecological data are generally the only source of information on the 5 environmental and ecological conditions expected prior to acidification. Whilst this 6 principle can be applied to future conditions, confounding factors may perturb surface 7 waters into states not previously encountered and as a result we may lose modern 8 analogues that represent pre-acidification conditions in presently acid lakes as 9 represented in the modern water chemistry database (Skelkvale and Wright, 1998; 10 Simpson et al 2005). However, as long as the effects of these confounding factors are 11 adequately simulated within dynamic models, the modern analogues for future 12 hydrochemical conditions provide a means to study the entire ecosystems of the 13 analogues and thus gain insights into future ecological status.

14

15 In this paper we apply analogue matching for key periods (described in section 3.3) of 16 long term modelled data from 1860 to 2100 for a suite of lakes in the Galloway region 17 of south-west Scotland. We compare MAGIC simulated hydrochemistry with a large 18 modern hydrochemistry dataset covering the whole of the UK to identify appropriate 19 modern analogues. The Round Loch of Glenhead (RLGH) was selected from the 20 regional assessment to demonstrate how this approach can be used to assess the 21 efficacy of the Gothenburg protocol on surface water recovery from acidification; and 22 the integrated effect of deposition and climate change perturbations on water quality 23 in the future.

24

1 The objectives of this study were to a) identify analogue lakes from a modern training 2 set of water quality based on MAGIC simulated data from 1860 to gain a better 3 understanding of achievable restoration targets for 59 lakes in the Galloway region 4 and b) to identify analogues based on future projections of water chemistry based on 5 acid deposition reductions and the effects of climate change. Combined, these results 6 will facilitate the setting of realistic water quality guidelines. Such information is 7 potentially highly informative to the assessment of the current and future status of 8 chemical recovery in south-west Scotland, and to evaluate the success or otherwise of 9 emission abatement strategies. 10

- 11 **2. The study area**
- 12

13 The location of 59 sites on two major geological types in the Galloway region is 14 shown in Figure 1 and a summary of the catchment characteristics is shown in Table 15 1. The catchments were selected to represent a regional distribution of acidified lakes 16 in relation to acid deposition, forest cover, soil type and geology. The region is acid 17 sensitive, with highly siliceous granitic bedrock covered by either organo-mineral soil 18 or organic rich acidic soils, which offers only limited ability to neutralise acid inputs 19 from the atmosphere (Wright et al., 1994). Granitic bedrock, found at high 20 elevations, is resistant to weathering, and provides a relatively low supply of base 21 cations to neutralise acidic deposition, compared to the greywackes at lower altitude 22 that are relatively base rich.

23

Decades of acid deposition and large-scale afforestation in the mid 20th century have exacerbated the problem of soil and water acidification in the region (Puhr et al.,

1	2000). To the south and west of the region, moorland communities predominate.
2	Fifty nine sites in the region of Galloway are used in the analogue matching procedure
3	to identify suitable analogues for a lake region known to have been significantly
4	affected by acid deposition. In addition modern analogues were identified on the basis
5	of their match to model predictions of hydrochemistry based on deposition and
6	climate change impacts on biogeochemical processes at a small intensively studied
7	catchment located in the Merrick mountains namely the Round Loch of Glenhead
8	(RLGH). This site was selected principally because it is a key site in the UK Acid
9	Water Monitoring Network ((UKAWMN) which was established to assess the effect
10	of emission reductions on selected acid sensitive freshwaters), and because over the
11	past 21 years there has been significant developments in terms of techniques for
12	palaeolimnological reconstructions that have been used to validate hindcast MAGIC
13	simulations for surface water pH (Battarbee et al., 2005, 2008).
14	
15	3. Methods
16	
17	3.1 The MAGIC model
18	
19	MAGIC is a process-orientated model, developed to predict the long-term effects of
20	acidic deposition on soil and surface water chemistry (Cosby et al., 2001). The model
21	consists of; (i) soil-soil solution equilibrium equations in which the chemical
22	composition of the soil solution is assumed to be governed by simultaneous reactions
23	involving cation exchange, dissolution and speciation of inorganic and organic
24	carbon; and (ii) mass balance equations in which fluxes of major ions to and from the
25	soil and surface water are assumed to be governed by atmospheric inputs, mineral

1	weathering, net uptake by biomass and loss in runoff. Recent work on UK upland
2	lakes (Cooper and Jenkins, 2003) has demonstrated a direct link between S input and
3	output fluxes, confirming that in-catchment processes have a minor impact. Therefore,
4	SO ₄ was treated as 'pseudo-conservative', with current surface water outputs equal to
5	deposition inputs. MAGIC produces long-term reconstructions and predictions of soil
6	and surface water chemistry in response to scenarios of acid deposition, land use and
7	climate change (with regard to the Round Loch of Glenhead). Nitrogen dynamics
8	within the model embrace the N saturation concept (Stoddard, 1994) with the
9	inclusion of dynamic equations for N cycling. The introduction of a soil organic
10	matter compartment controls NO_3^- leakage from the soil, based conceptually on an
11	empirical model described by Gundersen et al. (1998). Major processes affecting
12	NO_3^- and NH_4^+ concentrations in surface water have been represented in the model,
13	the most significant being nitrification (biological conversion of NH_4^+ to NO_3^-) and
14	immobilisation (Gundersen et al., 1998; Jenkins et al., 2001). For this study, MAGIC
15	was applied on an annual time-step. Soil physico-chemical parameters were
16	represented as a single soil box (by weighting soil data vertically and spatially within
17	the catchment), with a number of simplifying assumptions. Note that, in the model
18	and throughout this paper, ANC is calculated using the charge balance definition, as
19	the sum of base cations (Ca^{2+} , Mg^{2+} , Na^+ , K^+ and NH_4^+) minus the sum of acid anions
20	$(Cl^{-}, SO_4^{2-} and NO_3^{-}).$

- **3.2 Model Calibration**

The MAGIC calibration procedure followed is that documented by Evans *et al* (2001), and a detailed account of the calibration with N dynamics (MAGIC7) is given
 in Cosby *et al.* (2001) and Jenkins *et al.* (2001).

4

5 3.3 Acid deposition and land use sequences

6

7 Historic sequences of anthropogenic S, NOx and NHy deposition were obtained by 8 scaling current deposition to reconstructed emission sequences (Bettelheim and Littler 9 1979; Warren Spring Laboratory 1987; Simpson et al. 1997). For the period 1980 to 10 2000, deposition records from Eskdalemuir, south-west Scotland were used to refine 11 deposition sequences. The calibration year was 2000. Sulphur and nitrogen deposition 12 forecasts were based on projections from the FRAME model and represent the current 13 legislation scenario (CLE). CLE is based on the Gothenburg protocol (Multi-Pollutant 14 Multi Effects Protocol aimed at reducing the exceedance of critical loads for S, N and 15 Ozone in sensitive areas) to the UN-ECE Convention on Long-range Transboundary 16 Air Pollution and other national and EU legislation. Modelled data represent 17 important periods in the transition of ecosystems from pristine to acidified to the 18 recovery stage, these include the pre-acidification condition (1860); period of 19 maximum acid emissions (1970); 'present day' (2000), the year to achieve good 20 ecological status of surface water under the WFD (2015), full implementation of CLE 21 (2030) and long term forecast (2100). 22

23 In the British uplands, large-scale commercial afforestation is the main land

24 management practice. Conifer plantations significantly exacerbate the acidification

25 status of soils and surface waters in acid sensitive areas of the UK and given that

forest uptake, dry deposition and runoff are influenced by the age and forest cover at a
 site, historical sequences and future forecasts were constructed for the key driving
 variables based on a 50 year crop rotation (Helliwell et al., 2003). Calibration of the
 MAGIC model with these deposition and land use sequences provides the basic model
 setup behind the 'Base Case' scenario.

6

7

3.4 Climate perturbations

8

9 Details of climate perturbations were published as part of a pan-European study by 10 Wright et al., 2006. In the current study the same principles were adopted at the 11 Round Loch of Glenhead. The general purpose of the sensitivity trials was to 12 investigate the relative importance of future changes in climate on various 13 biogeochemical processes using the MAGIC model. Thus the biogeochemical 14 processes were tested sequentially, and the magnitude of perturbation was chosen to 15 be sufficiently large and rapid to encompass a major climate change, but yet not 16 completely unrealistic with respect to possible scenarios of climate change for the 17 next 100 years. The extent of change for the perturbations investigated here was 18 largely informed from experimental manipulations and other relevant research 19 (Wright et al 2006). The justification for testing the sensitivity of a selection of 20 climate driven biogeochemical processes is covered in detail by Wright et al (2006). 21 Details of the climate induced biogeochemical perturbations used at the Round Loch 22 of Glenhead are summarised in Table 2. The direction and magnitude of future 23 biogeochemical projections were based on evidence from a number experimental and 24 manipulation studies throughout the UK and Europe (Wright et al 2006). To assess 25 the overall impact of climate perturbations on biogeochemical processes and future

surface water chemistry, all sequences from the trials reported by Wright et al (2006)
 were modelled simultaneously. These data were used to identify analogues of future
 water quality that are driven by reductions in acid deposition and climate change,
 namely 'All perturbations' in Table 2.

5

6 3.5 Modern analogue approach

7

8 Analogue matching (Overpeck et al., 1985; Flower et al., 1997) is a palaeoecological 9 technique used to identify the k-closest sites from a modern set of lakes that are most 10 similar, in terms of a suite of variables or parameters, to the impacted lake prior to the 11 onset of change. The k-closest sites are selected on the basis of their similarity to 12 organisms in the target sample that are preserved in lake sediments, and are known as 13 modern analogues. The pre-impact or reference condition flora and fauna for the 14 target lake can then be inferred on the basis of the species found living in the modern 15 analogues today (Simpson et al., 2005). Here we replace matching on biological 16 variables with matching on hydrochemical variables. The identification of modern 17 analogue sites involves the use of similarity or distance coefficients to determine how 18 similar any two sites are in terms of a set of descriptor variables, and the process is 19 known as analogue matching. Numerous similarity or distance coefficients have been 20 developed to deal with different types of descriptors. Euclidean or Manhattan metric 21 distance coefficients are appropriate for the analysis of hydrochemical data in cases 22 where the descriptors are all quantitative, though may be unsuitable for variables that 23 differ markedly in scale unless suitably transformed. Gower (1971) proposed a 24 general coefficient of similarity, in which each descriptor is processed separately 25 according to its type (Eq 1).

2
$$S(x_1, x_2) = \frac{1}{P} \sum_{j=1}^{P} S_{12j}$$
 Eq (1)

4 where $S(x_1, x_2)$, the similarity between objects x_1 and x_2 , is the average over the *p* 5 descriptors of the individual similarity computed for the j^{th} descriptor (S_{12j}). The data 6 used here consist only of quantitative descriptors. As such the similarity between x_1 7 and x_2 for the j^{th} descriptor is

8

9
$$S_{12j} = 1 - \left[\frac{|x_{1j} - x_{2j}|}{R_j}\right]$$
 Eq (2)

10

11 where R_j is the range taken by the j^{th} descriptor (Eq 2). This is the Manhattan metric 12 of data standardised by the range, expressed as a similarity.

13

14 Gower's coefficient was implemented in the R computer language (R Development 15 Core Team, 2009) using the analogue package (Version 0.6-6; Simpson 2007, 16 Simpson and Oksanen, 2009). The analogue package was also used to perform the 17 analogue matching. Eight hydrochemical parameters were used in the matching 18 routine; Ca, Mg, Na, K, SO₄, Cl, NO₃, and pH. Whilst the most recent version of MAGIC (as applied here) has a simplistic representation of C dynamics (including the 19 20 production of DOC and organic acids), its inclusion in the analogue matching 21 procedure would reduce the number of possible analogues selected because DOC data 22 were not available for a subset of the modern data set samples. It was therefore agreed 23 that DOC should be omitted from the matching routine.

17

2	There is no statistical theory upon which a cut-off or threshold on the dissimilarity
3	scale can be chosen to best discriminate between analogue and non-analogue sites. As
4	such, the distribution of pair-wise dissimilarities computed on the training data (the
5	modern water chemistry data set) is used as a guide to select an appropriate cut-off.
6	Usually, a low percentile of this distribution is selected (Simpson, 2007), such as the
7	5 th or 2.5 th . Here, owing to the strong skew to small values observed in the distribution
8	of pair-wise dissimilarities, we selected the 2 nd percentile of this distribution yielding
9	a dissimilarity cut-off of 0.0169. Monte Carlo simulation (10000 simulations) from
10	the observed pair-wise dissimilarities confirmed this choice of similarity, suggesting a
11	Monte Carlo p-value of 0.02 for the significance of this threshold (Simpson 2007).
12	
13	3.6 Modern water chemistry data set
14	
15	The modern water chemistry data set used to analogue match with the MAGIC
16	hindcasts/forecasts comprises 5000+ water samples from lakes, rivers/streams and

artificial water bodies across the UK. For the purposes of this study only the lake 18 sites were selected for the training set, resulting in 1391 lake sites being represented.

19 Due to inherent variability in water chemistry from a single site, we chose to include

20 all available samples for each of the 1391 sites in the training set, where available.

21 However, the vast majority of the data holdings are single spot samples. This resulted

- 22 in a final training set of 2455 water samples against which to match the MAGIC
- 23 hindcasts/forecasts. The modern chemistry training set consists of spot samples,
- 24 mainly sampled in the early to mid 1990s supplemented by more recent, target

- 1 regional surveys in early to mid 2000s. As a result, the hydrochemistry of any
- 2 identified modern analogues may have changed since the spot samples were collected.
- 3

4 **4 Results**

5

6 4.1 Regional variations in observed surface water chemistry

7

8 Differences in observed surface water chemistry result from a range of catchment 9 specific factors including acidic and sea salt deposition, geological characteristics and 10 land use. Bedrock geology has a strong influence on surface water ANC and pH, with 11 24 of the most acid lakes being situated on the granitic plutons in the region (median 6.85 μ eq 1⁻¹ and pH 5.03 respectively, Figure 1). The chemistry is considerably more 12 acid than the 35 sites that are underlain by greywackes (median 100.1 μ eq l⁻¹ and pH 13 14 6.43 respectively). The granitic bedrock is resistant to weathering and the median sum base cations (Ca + Mg+Na+K) for the region is 217.4 μ eq l⁻¹ compared to 1033.1 μ eq 15 1^{-1} for the catchment underlain predominantly by the more base rich greywackes. 16 17 Enhanced inputs of dry and occult deposition, increased evapotranspiration and lower 18 runoff at the forested sites result in the greatest concentration of xSO₄ (anthropogenic 19 SO_4 calculated as the total SO_4 minus marine SO_4 , determined as chloride concentration (in μ eq l⁻¹) multiplied by 0.104, the ratio of SO₄ to chloride in sea salt) 20 and Cl (47.01 μ eq l⁻¹ and 207.9 μ eq l⁻¹ respectively) in contrast to the moorland sites 21 (38.13 μ eq l⁻¹ and 131.21 μ eq l⁻¹ respectively). 22 23

24 **4.2 Simulated surface water chemistry (1860 to 2100)**

MAGIC was successfully calibrated to 59 sites in the Galloway region and the
 simulated present day surface water ANC closely matches the observations (r² = 0.96).
 This implies that the difference between the sum of strong base cations and strong
 acid anions corresponds to observed chemistry.

5

6 MAGIC simulated ANC for 1860 are skewed to the higher, non acid classes 7 indicating the target hydrochemical reference conditions prior to the Industrial Revolution for the region (Figure 2a). While 24 sites have an ANC >100 μ eq l⁻¹ a 8 further 33 sites have an ANC between the ranges 40-100 μ eg l⁻¹ which is above the 9 10 critical threshold for acid sensitive aquatic organisms. The model indicates that 11 surface water acidification occurred from the mid nineteenth century to the 1970s, a 12 time representing peak acid deposition across the UK (Figure 2). A clear shift in this 13 distribution to more acidified surface water was simulated in response to high S 14 deposition, and to a lesser extent N deposition inputs, in 1970 (Figure 2b). From 15 1860-1970 the magnitude of the ANC decline is predicted to be greater for sites 16 situated on acid sensitive granite bedrock. In 1970 modelled ANC at 23 lakes declined to $<20 \text{ µeg } l^{-1}$: below this threshold the critical load is exceeded and ecosystem 17 18 damage can occur (Curtis and Simpson, 2004). In general, the largest decrease in 19 ANC was predicted to occur at those sites with the lowest initial ANC, and hence the 20 biggest sensitivity to acidic inputs. With the implementation of international 21 protocols in the mid 1980s and the more recent Gothenburg Protocol, reductions in 22 acidic emissions are predicted to reverse acidification processes for surface waters at most sites to 2015 and beyond (Figure 2d,e,f). The number of sites falling into the 23 ecologically damaging ANC classes $<20 \ \mu eq \ l^{-1}$ declined from 23 in 1970 to 12 in 24

2015, and 6 by 2100. All sites in 1860 had a simulated ANC greater than 20 µeq l⁻¹
 (Figure2a).

4	The frequency distribution of surface water pH followed a similar pattern to ANC
5	with the highest pH values being simulated prior to the onset of industrialisation in
6	1860 (Figure 2g). In 1970, approximately half (51%) of the sites acidified to below a
7	pH of 5.5 (a critical threshold for salmonids, below which they experience
8	physiological problems) compared to 7% in 1860 (these sites are inherently acid).
9	Projected trends in surface water pH reveal a significant recovery in the critical pH
10	classes of <5.5 (46% in 2000, 27% in 2015, 24% in 2030 and 17% in 2100, Figure 2i,
11	j, k, l).
12	
13	Regional simulated background (1860) concentrations of NO ₃ were $\leq 6.31 \mu eq l^{-1}$. By
14	1970 many of the sites show clear signs of elevated surface water NO_3^- (Figure 2n).
15	The percentage of predicted NO_3^- to the total anthropogenic acid anion concentration
16	(NO ₃ ⁻ +xSO ₄) increases from a median of 5.77±0.79%, 6.58±0.82%, 21.22±1.68,
17	35.37±2.04, 37.04±2.00, 43.92±1.91 for the years 1860, 1970, 2000, 2015, 2030,
18	2100 respectively. These results indicate that xSO ₄ remains the dominant anion in the
19	lakes and there are still significant benefits from reducing S inputs in terms of
20	restoration targets for acidification.
21	
22	4.3 Analogue matching
23	
24	A number of analogues were identified for key years (1860, 1970, 2000, 2015, 2030,
25	and 2100) for each of the Galloway MAGIC sites (Figure 3). There was a high degree

1 of variability in the number of analogues between sites and years, and it was not 2 possible to identify analogues for all sites within the selected cutoff (Figure 3). 3 Analogues were selected if the MAGIC modelled chemical composition of the lakes 4 matched with the suite of chemistry in the modern training set. The modelled 5 composition of the lakes changed through time in response to deposition and this 6 largely determined the number of analogues identified in Figure 3. Of the 59 MAGIC 7 sites, only one, Loch Heron, has no analogues within the training set for any of the 8 time periods. A further six (Knockstring, Howie, Garwuachie, Loch of the Lowes, 9 Ronald and Black Loch) sites have analogues for only a few of the selected time 10 periods. Many of the MAGIC sites have no, or very few, analogues for the time 11 period of greatest acidification pressure (1970). The lack of analogues for 1970 12 reflects the general improvements in water quality across the UK. This is clearly a 13 significant result from a policy perspective as it demonstrates the efficacy of current 14 and previous EU emission reduction protocols in the chemical recovery of some of the 15 most acid sensitive areas of the UK from 1970 to 2000 (Figure 3). Figure 4 shows 16 surface water pH of the selected close modern analogues for each of the time periods 17 under study. In all cases the pH of the close modern analogues for a single time period 18 are well constrained and vary very little in terms of absolute pH values. This figure 19 demonstrates that there is a wide gradient of acid sensitivity between sites; and the 20 magnitude of acidification (from 1860 to 1970) and recovery is highly variable 21 through time. A key feature of the close modern analogues for the reference 22 conditions of many of the Galloway lakes is that they are predominantly located in the 23 north-west of Scotland, the area of the UK that has received the lowest levels of acid 24 deposition.

25

1 It was not feasible to present maps showing the location of analogues for all 59 sites 2 in the region for the 6 keys years. For this reason the RLGH was selected from the 3 region to demonstrate how the spatial distribution of analogues changed through time 4 in response to a reduction in S and N deposition. For example, Figure 5a shows the 5 locations of close modern analogues for 1860 (hindcast) at the Round Loch of Glenhead. Whilst the majority of sites are located in the north west of Scotland, a 6 7 small selection was identified in areas of less acid geology in north Wales, which 8 cannot be considered minimally impacted as they receive elevated level of acid 9 deposition. Why these sites are similar to the reference condition chemistry of RLGH 10 is yet to be determined, yet this observation tallies with the results of Simpson et al 11 (2005), who found modern analogues in the same region for the reference conditions 12 of several UKAWMN lakes when matching was performed using diatom and 13 Cladocera abundance data. Nonetheless, the north-west of Scotland contains many of 14 the biological analogues for acidified sites in the UKAWMN determined by analogue 15 matching of diatom and Cladocera sub-fossil assemblages from sediment core 16 samples (Simpson et al., 2005). This finding supports the results from the current 17 study, whereby suitable modern reference sites for acidification were identified in the 18 north-west of Scotland.. In contrast, analogues for the RLGH from MAGIC 19 simulations in 1970 show a shift in the location of the analogue sites from semi-20 pristine areas of the UK to acid impacted areas (Figure 5b). In 2015, close modern 21 analogues sites for the RLGH under 'base case' conditions are distributed primarily in 22 the north and north-west of Scotland, and north and central Wales (Figure 5c). Model 23 projections to 2100 show a shift in the distribution of the analogues to the English 24 Lake District and north Wales however only 4 analogues could be identified for this 25 time period (Figure 5d). In line with the objectives of this study, the sparse number of

1	spatial analogues with chemical information that match these longer term MAGIC
2	projections (2100), indicate that given projected deposition reductions, total
3	restoration of water quality to pre-industrial levels is not achievable.
4	
5	4.4 Assessment of climate change impacts on simulated surface water chemistry
6	
7	4.4.1 Base case
8	The sensitivity of MAGIC to various climate induced changes that influence
9	biogeochemical processes were tested at the RLGH. Figure 6 illustrates the relative
10	magnitude of the response to these various changes applied singly and in combination
11	(all perturbations). The base case (no climate effects) comparison of year 2030
12	relative to year 2000 shows a continued recovery of surface water ANC in response to
13	the expected continued decrease in S and N deposition (Figure 6a). NO ₃ ⁻
14	concentrations (Figure 6b), however, first decrease slightly in response to decreased N
15	deposition and then increase around 2020 due to the beginnings of N saturation as the
16	soil C/N ratio declined with N enrichment. This increase in NO_3^- will impede the
17	recovery of ANC. Lake pH shows significant recovery from 4.98 in 2000 to a pH of
18	5.82 in 2100. The percentage recovery of pH by 2015 (base case scenario) relative to
19	the reference condition (1860) is 24%. The longer term recovery (2100) is predicted
20	to be 61%.
21	
22	4.4.2 Climate perturbations
23	Sensitivity trials of possible climate induced responses indicate that the generation of
24	DOC accelerates the recovery rate of ANC relative to the base case (Figure 6a). Of all

25 the climate induced perturbations, DOC invoked the greatest recovery in ANC

1	relative to 1860 and into the future (38% by 2015 and 59% by 2100). The RLGH is
2	10km from the coast and increased inputs of seasalts are predicted to have a greater
3	effect on ANC in the future by impeding the rate of recovery compared to the base
4	case (Figure 6a). The percentage recovery of ANC by 2015 (seasalt perturbation)
5	relative to the reference condition (1860) is 12%. The predicted longer term recovery
6	by 2100 is 41%. Discharge has a similar effect on ANC in the longer term (post
7	2040). When all climate perturbations were included in the forecast simultaneously
8	(All perturbations, Figure 6), the ANC increased dramatically until 2030, thereafter,
9	the lake shows signs of declining ANC. In contrast to the study by Wright et al
10	(2006), increased decomposition of soil organic matter and the size of the organic
11	matter pool at the RLGH had no effect on lake NO3 ⁻ concentrations, however
12	increased discharge was found to cause a greater decrease in NO ₃ ⁻ concentrations
13	relative to the base case until the point of NO_3^- saturation thereafter NO_3^- steadily
14	increased (Figure 6b). Whilst the response of lake pH is similar to ANC from 2000-
15	2100, all perturbations result in a depression of the pH below the base case and again
16	enhanced seasalt inputs have the greatest confounding effect on chemical recovery
17	(Figure 6c). With the seasalt influence, the percentage recovery of pH by 2015,
18	relative to the reference condition (1860), is 13 %. The predicted longer term recovery
19	at the RLGH is 55% by 2100.
20	
21	4.5 The use of modern analogues to define surface water chemistry in response to
22	reductions in acid deposition and climate change at the Round Loch of Glenhead
23	
24	The spatial distribution of analogue sites for water quality in 2015 and 2100 were

25 identified in response to the Gothenburg Protocol in Section 4.3 (Figure 5). Here we

1 show how climate can modify terrestrial and aquatic biogeochemical processes and 2 surface water quality and hence the distribution of analogues sites. Figure 7 shows the 3 distribution of close analogue sites using the simulated suite of parameters generated 4 by MAGIC with the climate perturbations. There is only a small difference between 5 the general location of analogues sites between the base case (Figure 5) and climate 6 change perturbations in 2015 (Figure 7). By 2100 the distribution of analogue sites 7 changed significantly between the base case and all climate perturbations, with 5 8 analogue sites in the low pollution region of the north west of Scotland and the 9 majority of analogues in north Wales. This change can be attributed to the predicted 10 increase in the ionic strength of the lake in response to the climate perturbation in 11 2100 ((sum of base cations (SBC) and sum of acid anions (SAA)) increased by 7% 12 and 5.4% respectively). A larger number of analogues were identified with the climate 13 perturbations (18) in 2100 compared to the base case (4 analogue sites). This suggests 14 that hydrochemical conditions under future climate change currently exist within the 15 modern population of lakes in the UK. As such, the effects of climate change on 16 hydrochemistry of RLGH are unlikely to vary wildly outside the modern range, a 17 result which suggests a limit on the impact of altered temperature and precipitation 18 regimes.

19

20 Discussion

21

The EU Water Framework Directive requires lakes to be classified according to the assemblage of chemical and biological elements they currently support. The system specified for this classification is a state-changed system, comparing any lake's current condition with its condition at a reference state. This requirement is key to the

1 first objective of this study and was achieved through the identification of a suite of 2 reference lakes that represent pre-acidification conditions from MAGIC simulated 3 hydrochemical data, and the novel analogue matching approach. In combination these 4 methods provide a robust platform to predict the timing and extent of future recovery 5 in line with the WFD.. We can now ask what chemical characteristics we should 6 expect for a fully restored lake and whether current emission reduction plans are 7 adequate to allow such restoration targets to be achieved in line with the second 8 objective of this study.

9

10 The implementation of the Gothenburg Protocol is predicted to result in a substantial 11 improvement in surface water ANC throughout the Galloway region. Predicted trends 12 in surface water chemistry from present day to 2015 (the year to achieve good 13 ecological status of surface water under the WFD) indicate a moderate improvement in water quality with c. 23±0.97 % recovery towards pre-acidification ANC for the 14 15 region ('Recovery' is defined as the forecast ANC recovery to 2030 as a percent of 16 the net ANC decline from pre-industrial conditions to present day i.e. [ANC₂₀₁₅-17 ANC_{present day}]/[ANC_{present day}-ANC₁₈₆₀] x 100. The general distributions of modern 18 analogue sites in 1860 and 2015 are comparable with the exception of one analogue 19 site in the English Lake District. The recovery in Galloway is relatively slow as a 20 result of the low base-status of soils at high altitude sites and extensive afforestation 21 in lower-lying catchments. At afforested sites, second rotation forest planting is likely 22 to slow, or in some cases prevent further recovery despite large reductions in S and N 23 deposition. A combination of base cation uptake by the forest, enhanced deposition to 24 the forest canopy and decreased water yield concentrating pollutants in surface waters 25 may further contribute to the delayed recovery of ANC towards reconstructed pre-

1	industrial reference conditions in the region. Projected trends in surface water quality
2	beyond 2015 indicate that recovery continues at the moorland sites at a much slower
3	rate, and at the forested catchments the surface waters begin to re-acidify. This
4	regional study illustrates the importance of catchment characteristics in determining
5	the wide range of surface water responses to changes in deposition for key years over
6	the 240 year period. In the longer term, beyond 2030 (full implementation of CLE),
7	the model indicates that increased N leakage to surface waters may cause
8	deterioration in the chemical status. Longer term forecasts to 2100 indicate a loss of
9	analogues from the north west of Scotland and a couple identified in both the Lake
10	District and north Wales.
11	
12	Analogues were identified for the majority of sites in the Galloway region and for
13	most time periods, however no analogues were selected from the hydrochemical
14	dataset for Loch Heron, and a further six sites (Knockstring, Howie, Garwuachie,
15	Loch of the Lowes, Ronald and Black Loch) have analogues for only a few of the
16	selected time periods (Figure 3). This reflects the sampling bias in the Freshwater
17	Umbrella data set, which predominately contains water chemistry samples from the
18	most sensitive freshwater in each 10 km grid square for use in national critical loads
19	assessments. In addition, the modern chemistry dataset consists of spot samples,
20	mainly sampled in the early to mid 1990s supplemented by more recent, target
21	regional surveys in early to mid 2000s. Overall, based on these two considerations,
22	the analogues reported here may represent a bias towards the more acid, lower pH and
23	ANC sites in the UK.

1	The inclusion of climate change impacts at the RLGH demonstrates that overall,
2	potential biogeochemical processes driven by changes in temperatures and rainfall in
3	the future may delay recovery. In these circumstances less stringent restoration
4	targets to those specified in 1860 should be considered. The sensitivity trials (Figure
5	6) give a first indication of possible consequences of climate change on
6	biogeochemical processes that operate at a catchment scale. Actual climate change
7	could affect these factors simultaneously and the combined effect could be larger or
8	smaller than either alone (Wright et al 2006). Where all climate perturbations were
9	combined to determine modern analogue sites for the RLGH it is important to
10	recognise that the hydrochemical output reflects the gross effect of a number of
11	complex and interactive processes within the soil and lake.
12	
13	The MAGIC model (Cosby et al., 2001) has been applied, tested and validated at
14	numerous catchments throughout Europe and North America. The RLGH is one of
15	several catchments throughout the UK with detailed palaeoecological information that
16	provides a record of the timing, rate and magnitude of biological and chemical
17	change. Battarbee et al. (2005) compared different diatom-pH transfer functions
18	against MAGIC simulated pH from pre-industrial times and found diatom inferred pH
19	to be ~0.6 pH unit more acid than the MAGIC simulated pH. Assuming that MAGIC
20	over predicts pH in pre-industrial times (reference condition) this may have
21	implications on the selection of analogue sites in this study as pH was used as a
22	parameter in the matching. Recent MAGIC applications (Wright et al., 2006 and
23	Evans, 2005) have tested climate induced responses with the existing model structure.
24	Uncertainties exist into the mechanisms and rates by which climate changes affect key
25	biogeochemical processes and at present the state-of-science appears insufficient to

1 provide the insight required to allow these processes to be programmed directly into 2 process models such as MAGIC. Sensitivity trials with the MAGIC model at the 3 RLGH demonstrate that the role of climate change on the concentration of organics 4 acids (DOC) in soils and surface waters emerges as an important factor, however 5 DOC is not currently included as a parameter in the analogue approach. 6 Despite these uncertainties, many studies reported in the literature predict past and 7 future changes in water chemistry with little or no evaluation of the viability of such 8 predictions. The long term simulated data presented here are constrained to realistic 9 ranges based on the occurrence of lakes with a similar chemical signature within the

modern hydrochemical dataset, therefore giving more credibility to the assessment of
surface water compliance with regard to achieving restoration targets.

12

13 Conclusion

14

15 It has been suggested that future global environmental change could lead to 16 environmental conditions unlike those that presently exist in acid, upland aquatic 17 ecosystems (Skjelkvale and Wright, 1998). If environmental conditions were to 18 change markedly, recovery targets for acidified lakes and streams would have to be 19 adjusted beyond the range of current hydrochemical conditions, and suitable candidate 20 reference lakes would be unlikely to exist, under such climatic conditions. 21 Palaeoecological reconstructions of the reference state, and palaeo-based analogue 22 matching for this state in particular, would be of very limited use in such 23 circumstances. This paper represents the first application of the analogue matching 24 technique to long term MAGIC predictions for the Galloway region of south-west 25 Scotland. Identification of modern reference lakes plays an essential role in fulfilling

1	the aims of the EU WFD and in defining suitable restoration targets against which
2	emission reductions policy can be evaluated. Here we show that modern analogues for
3	the reference states of 59 Galloway lakes can be identified from a population of
4	modern lake data by comparing them with MAGIC hindcasts. The majority of the
5	modern analogues identified are located in the north-west of Scotland, an area of
6	relatively low acid deposition and in areas of North Wales that are geologically
7	complex with areas of intermediate igneous rocks and the Ordovician shales that are
8	less sensitive to the effects of deposition (Helliwell et al .2007).
9	
10	The results clearly demonstrate that given a suitable modern training set against which
11	to match MAGIC predictions, close modern analogues for the predicted
12	hydrochemistry of the Round Loch of Glenhead under climate change can be
13	identified. Results for the Round Loch of Glenhead suggest that modern analogues
14	that are similar to the future hydrochemical conditions predicted by MAGIC under
15	perturbed climatic conditions currently exist in the UK lake population. This suggests
16	that the analogue approach may remain relevant for the identification of suitable
17	recovery targets and candidate reference lakes in the face of unprecedented climate
18	change. It is also clear from model predictions that surface water quality will
19	deteriorate beyond 2030 at the RLGH in response to climate change and, in light of
20	these finding, more realistic hydrochemical goals should be considered in future
21	assessments of upland water quality. However, further work is required to confirm
22	these results with MAGIC forecasts including climate change at other sites, and to
23	relate the climatic perturbations used here to actual GCM forecasts of climate change
24	in the UK.

1 Acknowledgements

2	This study was supported by the Euro-limpacs project (the Commission of European
3	Communities GOCE-CT-2003-505540), the Rural and Environment Research and
4	Analysis Directorate of the Scottish Government, and by the UK Government's
5	Department for the Environment, Food and Rural Affairs (DEFRA). The modern
6	water chemistry data set and part of the MAGIC model development was funded by
7	the UK DEFRA Freshwater Umbrella and Critical Loads and Dynamic Modelling
8	research programmes. The authors are particularly grateful to Sheila Gibbs for sample
9	preparation, managing the regional hydrochemistry database, and to the analytical
10	group at the Macaulay Institute for sample analysis. We also acknowledge Jack Cosby
11	and Dick Wright for their expertise in the initial phase of MAGIC sensitivity trials,
12	Malcolm Coull for producing Figure 1 and two anonymous reviewers for comments.
13	
14	References
14 15	References
14 15 16	References Battarbee, R.W., Monteith, D.T., Juggins, S., Evans, C.D., Jenkins, A., Simpson, G.L.
14 15 16 17	References Battarbee, R.W., Monteith, D.T., Juggins, S., Evans, C.D., Jenkins, A., Simpson, G.L. (2005) Reconstructing pre-acidification pH for an acidified Scottish loch: A
14 15 16 17 18	References Battarbee, R.W., Monteith, D.T., Juggins, S., Evans, C.D., Jenkins, A., Simpson, G.L. (2005) Reconstructing pre-acidification pH for an acidified Scottish loch: A comparison of palaeolimnological and modelling approaches. Environmental
14 15 16 17 18 19	References Battarbee, R.W., Monteith, D.T., Juggins, S., Evans, C.D., Jenkins, A., Simpson, G.L. (2005) Reconstructing pre-acidification pH for an acidified Scottish loch: A comparison of palaeolimnological and modelling approaches. Environmental Pollution 137, 135-149.
14 15 16 17 18 19 20	References Battarbee, R.W., Monteith, D.T., Juggins, S., Evans, C.D., Jenkins, A., Simpson, G.L. (2005) Reconstructing pre-acidification pH for an acidified Scottish loch: A comparison of palaeolimnological and modelling approaches. Environmental Pollution 137, 135-149.
14 15 16 17 18 19 20 21	References Battarbee, R.W., Monteith, D.T., Juggins, S., Evans, C.D., Jenkins, A., Simpson, G.L. (2005) Reconstructing pre-acidification pH for an acidified Scottish loch: A comparison of palaeolimnological and modelling approaches. Environmental Pollution 137, 135-149. Battarbee, R.W. , Monteith, D.T., Juggins, S., Simpson, G.L., Shilland, E.W., Flower,
14 15 16 17 18 19 20 21 22	References Battarbee, R.W., Monteith, D.T., Juggins, S., Evans, C.D., Jenkins, A., Simpson, G.L. (2005) Reconstructing pre-acidification pH for an acidified Scottish loch: A comparison of palaeolimnological and modelling approaches. Environmental Pollution 137, 135-149. Battarbee, R.W. , Monteith, D.T., Juggins, S., Simpson, G.L., Shilland, E.W., Flower, R.J. and Kreiser, A.M. (2008) Assessing the accuracy of diatom-based transfer
14 15 16 17 18 19 20 21 22 23	References Battarbee, R.W., Monteith, D.T., Juggins, S., Evans, C.D., Jenkins, A., Simpson, G.L. (2005) Reconstructing pre-acidification pH for an acidified Scottish loch: A comparison of palaeolimnological and modelling approaches. Environmental Pollution 137, 135-149. Battarbee, R.W. , Monteith, D.T., Juggins, S., Simpson, G.L., Shilland, E.W., Flower, R.J. and Kreiser, A.M. (2008) Assessing the accuracy of diatom-based transfer functions in defining reference pH conditions for acidified lakes in the United
14 15 16 17 18 19 20 21 22 23 24	References Battarbee, R.W., Monteith, D.T., Juggins, S., Evans, C.D., Jenkins, A., Simpson, G.L. (2005) Reconstructing pre-acidification pH for an acidified Scottish loch: A comparison of palaeolimnological and modelling approaches. Environmental Pollution 137, 135-149. Battarbee, R.W. , Monteith, D.T., Juggins, S., Simpson, G.L., Shilland, E.W., Flower, R.J. and Kreiser, A.M. (2008) Assessing the accuracy of diatom-based transfer functions in defining reference pH conditions for acidified lakes in the United Kingdom. The Holocene 18(1), 57-67.

1	Bettelheim J. and Littler A. (1979) Historical trends of sulphur oxide emissions in
2	Europe since 1865. CEGB report PL-GS/E/1/79. CEGB, London.
3	
4	Cooper, D.M. and Jenkins, A. (2003) Response of acid lakes in the UK to reductions
5	in atmospheric deposition of sulfur. Science of The Total Environment 313, 91-100.
6	
7	Cosby, B.J., Ferrier, R.C., Jenkins, A. and Wright, R.F. (2001) Modelling the effects
8	of acid deposition: refinements, adjustments and inclusion of nitrogen dynamics in the
9	MAGIC model. Hydrology and Earth System Sciences 5(3), 499-517.
10	
11	Curtis, C.J. and Simpson, G. (Eds.), (2004) Summary of Research under DEFRA
12	Contract "Recovery of acidified waters in the UK" EPG/1/3/183. ECRC Research
13	Report No. 98. University College London, UK.
14	
15	European Commission, (2000) Directive 2000/06/EC of the European Parliament and
16	of the Council of 23 October 2000 establishing a framework for community action in
17	the field of water policy. Official Journal L327 of 22.12.2000.
18	
19	Evans, C.D. (2005) Modeling the effects of climate change on an acidic upland
20	stream. Biogeochemistry 74, 21–46.
21	
22	Evans, C., Jenkins, A., Helliwell, R., Ferrier, R. and Collins, R., (2001) Freshwater
23	acidification and recovery in the United Kingdom. Centre for Ecology and Hydrology
24	report. ISBN 1 903741 01 7.
25	

1	Flower, R. J., Juggins, S., Battarbee, R.W. (1997) Matching diatom assemblages in
2	lake sediment cores and modern surface sediment samples: The implications for lake
3	conservation and restoration with special reference to acidified systems.
4	Hydrobiologia 344, 27–40.
5	
6	Gower, J. (1971) A general coefficient of similarity and some of its properties.
7	Biometrics 27, 857–871.
8	
9	Gundersen, P., Callesen, I. and de Vries, W. (1998). Nitrate leaching in forest
10	ecosystems is related to forest floor C/N ratios. Environmental Pollution 102, 403-
11	407.
12	
13	Helliwell, R.C., Coull, M.C., Evans, C.D., Davies, J.J.L., Norris, D., Ferrier, R.C.,
14	Jenkins, A. and Reynolds, B. (2007) The role of catchment characteristics in
15	determining the fate of surface water N in four upland regions in the UK, Hydrology
16	and Earth System Sciences 11, 356-371.
17	
18	Helliwell, R.C., Jenkins, A., Ferrier, R.C., and Cosby, B.J. (2003) Modelling the
19	recovery of surface water chemistry and the ecological implications in the British
20	uplands. Hydrology and Earths System Science 7, 456-466.
21	
22	Jenkins, A., Ferrier, R.C. and Helliwell, R.C. (2001) Modelling nitrogen dynamics at
23	Lochnagar, N.E. Scotland, Hydrology and Earth System Sciences 5, 519-527.
24	

1	Overpeck, J. T., Webb, T. and Prentice, I. C. (1985) Quantitative interpretation of
2	fossil pollen spectra—dissimilarity coefficients and the method of modern analogs.
3	Quaternary Research 23(1), 87–108.
4	
5	Posch, M. (2002) Impacts of climate change on critical loads and their exceedances in
6	Europe. Environmental Science & Policy 5, 307–317.
7	
8	Puhr, C.B., Donoghue, D.N.M., Stephen, A.B., Tervet, D.J. and Sinclair, C. (2000)
9	Regional patterns of stream water acidity and catchment afforestation in Galloway,
10	SW Scotland. Water Air Soil Pollution 120, 47–70.
11	
12	R Development Core Team, (2009) R: A language and environment for statistical
13	computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-
14	900051-07-0, URL http://www.R-project.org.
15	
16	Rose, N.L. and Rippey, B. (2002) The historical record of PAH, PCB, trace metal and
17	fly-ash particle deposition as a remote lake in north-west Scotland. Environmental
18	Pollution 117(1), 121-132.
19	
20	Simpson, G.L. (2007) Analogue methods in palaeoecology: using the analogue
21	package. Journal of Statistical Software 22, 1–29.
22	
23	Simpson, G.L. and Oksanen, J. (2009) Analogue matching and modern analogue
24	technique transfer function models. (R package version 0.6-6). http://cran.r-
25	project.org/package=analogue.

1	
2	Simpson, D., Olendrzynski, K., Semb, A., Storen, E. and Unger, S. (1997)
3	Photochemical oxidant modelling in Europe: multi-annual modelling and source-
4	receptor relationships. EMEP/MSC-W Report 3/97. Norwegian Meteorological
5	Institute, Oslo.
6	
7	Simpson, G.L., Shilland, E.M., Winterbottom, J.M., and Keay, J. (2005) Defining
8	reference conditions for acidified waters using a modern analogue approach.
9	Environmental Pollution 137, 119-133.
10	
11	Skjelkvåle, B.L., Stoddard, J.L., Jeffries, D.S., Tørseth, K., Høgåsen, T., Bowman, J.,
12	Mannio, J., Monteith, D.T., Mosello, R., Rogora, M., Rzychon, D., Vesely, J.,
13	Wieting, J., Wilander, A., Worsztynowicz, A. 2005 Regional scale evidence for
14	improvements in surface water chemistry 1990–2001. Environmental Pollution
15	137(1), 165-176.
16	
17	Skjelkvåle, B.L. and Wright, R.F. (1998) Mountain lakes; sensitivity to acid
18	deposition and global climate change Ambio 27(4), 280-286.
19	
20	Stoddard., J.L. (1994) Long term changes in watershed retention of nitrogen. In:
21	Environmental chemistry of lakes and reservoirs. (Ed: L.A. Baker). ACS Advances in
22	chemistry Series No. 237, American Chemistry Society, Washington, DC, 223-284.
23	

1	Stralberg, D., Jongsomjit, D., Howell, C.A., Snyder, M.A., Alexander, J.D., Wiens,
2	J.A. and Root, T.L. (2009) Re-shuffling of species with climate disruption: a non-
3	analog future for California birds? PLoS One 4(9), e6825.
4	
5	UNECE (2008) Joint Expert Group on Dynamic Modelling Summary Report on the
6	Eighth Meeting ECE/WG.1/2008/12. United Nations Economic Commission for
7	Europe, Geneva.
8	
9	van Breemen, N., Jenkins, A., Wright, R.F., Arp, W.J., Beerling, D.J., Berendse, F.,
10	Beier, C., Collins, R., van Dam, D., Rasmussen, L., Verburg' P.S.J. and Wills' M.A.
11	(1998) Impacts of elevated carbon dioxide and temperature on a boreal forest
12	ecosystem (CLIMEX project) Ecosystems 1, 345-51
13	
14	Warren Spring Laboratory (1987) Acid Deposition in the United Kingdom, 1981–85.
15	Warren Spring Laboratory, Stevenage, UK.
16	
17	Wright, R.C., Aherne, J., Bishop, K., Camarero, L., Cosby, B.J., Erlandsson, M.,
18	Evans, C.D., Forsius, M., Hardekopf, D.W., Helliwell, R., Hruška, J., Jenkins, A.,
19	Kopáček, J., Moldan, F., Posch, M., Rogora. M. (2006) Modelling the effect of
20	climate change on recovery of acidified freshwaters: Relative sensitivity of individual
21	processes in the MAGIC model. Science of the Total Environment 365, 154–166.
22	
23	Wright, R.F., Cosby, B.J., Ferrier, R.C., Jenkins, A., Bulger, A.J. and Harriman, R.
24	(1994) Changes in acidification of lochs in Galloway, southwestern Scotland, 1979-

1	1988: The MAGIC model used to evaluate the role of afforestation, calculate critical
2	loads, and predict fish status. Journal of Hydrology 161, 257-285.
3	
4	Wright, R.F., Larssen, T., Camarero, L., Cosby, B.J., Ferrier, R.C., Helliwell, R.C.,
5	Hruska, J., Jenkins, A., Kopacek, J., Moldan, F., Posch, M. and Rogora, M. (2005)
6	Recovery of acidified European surface waters. Environmental Science and
7	Technology 39, 64A–72A.
8	
9	
10	List of Figures
11	
12	Figure 1: Location of the study lakes in south-west Scotland
13	
14	Figure 2: Distributions (histograms and cumulative frequencies) of surface water
15	ANC (μeql^{-1}) panel to left, pH centre panel, and NO ₃ (μeql^{-1}) panel to right, for the
16	years 1860, 1970, 2000, 2015, 2030 and 2100.
17	
18	Figure 3: Level plot showing the number of analogues per time period for each of the
19	59 Galloway lakes. Empty (white) blocks indicate that no analogues for that time
20	period could be identified.
21	
22	Figure 4: Surface water pH for selected close modern analogues for all sites in the
23	Galloway region.
24	

1 Figure 5: Location of close modern analogues for the Round Loch of Glenhead.

2 Differences between years are driven by long term changes in acid deposition a) 1860,

b) 1970, c) 2015, and d) 2100. The size of the circle is proportional to the similarity

4 (1/dissimilarity).

5

Figure 6: Time series for a) ANC ($\mu eq l^{-1}$), b) NO₃ ($\mu eq l^{-1}$), and c) pH in runoff at the 6 Round Loch of Glenhead as simulated by MAGIC for the period 1860-2100 under 7 8 various possible climate-induced responses in the future. Base case (deposition 9 reduction but no climate-induced changes); seasalt =50% increased seasalt deposition; 10 discharge =20% increased runoff; weathering =20% increased weathering rate; DOC 11 =50% increased concentration of dissolved organic matter in soil solution and runoff; 12 $pCO_2 = 50\%$ increased pCO_2 in soil air and runoff; uptake = 50\% increase in uptake of 13 base cations and nitrogen by vegetation; decomposition =increased decomposition of soil organic matter (by 1 mol m^{-2} year⁻¹), the black dot represents the observed data 14 15 used in the model calibration.

16

Figure 7: Location of close modern analogues lakes for the Round Loch of Glenhead
based on changes in biogeochemical processes that are sensitive to deposition and
climate. The size of the circle is proportional to the similarity (1/dissimilarity).

Site name		Fasting	Northing	l aka	Total	Forestry
Site name		Lasting	Northing	area	area	rorestry
		m	m	ha	ha	%
Loch Arron	GAI 001	244326	583818	27	20.5	<u></u> 0
Balloching	GAL 002	245564	594738	9.2	234.3	16
Barscobe	GAL 003	266890	581405	4.6	91.5	33
Black Loch	GAI 004	249630	572890	2.8	35.5	43
Black	GAL 005	227970	565529	6.0	53.3	45
Black by Ochiltree	GAL006	231907	575651	2.6	49.3	57
Brack	GAL007	268381	582147	3.7	17.5	27
Bradan	GAL008	242399	597360	215.5	1495.0	28
Brechbowie	GAL009	243239	596084	7.9	87.5	14
Clatteringshaws	GAL010	254237	577007	387.5	9811.8	35
Cornish	GAL011	240892	594097	5.4	345.0	10
Loch Doon	GAL012	249779	597677	818.9	12981.5	23
Dornal	GAL013	229229	576159	43.8	632.8	41
Dow by Moan	GAL 014	235337	584808	1.3	9.0	78
Dow by Narroch	GAL015	246169	582559	0.5	13.9	0
Dow by Round	GAL016	245755	580784	0.5	8.4	0
Drumlanford	GAL 017	228004	577508	9.5	44 0	22
Drv	GAL018	246691	585648	2.4	21.0	31
Loch Dungeon	GAL 019	252500	584400	35.4	641.5	9
Loch Enoch	GAL 020	244600	585300	50.2	222.0	0
Fannie	GAL 021	244670	592421	1.2	6.3	81
Finlas	GAL 022	245915	598296	76.9	1096.0	6
Fyntalloch	GAL 023	231704	574517	72.5	307.6	37
Garwuachie	GAL 024	234319	569039	3.7	240.5	71
Girvan Eve	GAL 025	241174	592665	1.9	26.8	23
Goosie	GAL026	244038	594886	5.2	94.8	8
Gower	GAL027	228882	577210	6.2	355.0	49
Loch Grannoch	GAL028	254100	569800	111.4	1432.0	40
Harrow	GAL029	252783	586686	13.7	385.3	28
Heron	GAL030	227208	564873	12.7	173.5	33
Loch Howie	GAL031	269700	583400	17.7	193.5	52
Lochinvar	GAL032	265850	585392	39.3	309.8	22
Kirriereoch Loch	GAL033	236400	586600	6.9	20.8	67
Knockstring	GAL034	269761	588225	6.1	59.5	33
Loch Gower	GAL035	254952	573512	0.6	6.9	92
Long Loch of Dungeon	GAL036	246679	584128	3.9	240.3	7
Long Loch of Glenhead	GAL037	244523	580830	10.2	95.3	0
Lilies Loch	GAL038	251727	574704	1.9	133.5	20
Loch of the Lowes	GAL039	246876	570464	2.5	59.3	82
Loch Macaterick	GAL040	244000	591200	74.4	961.8	13
Mayberry	GAL041	228618	575073	67.9	1777.8	53
Minnoch	GAL042	253049	585721	6.6	820.5	21
Moan	GAL043	234771	585787	51.8	544.5	71
Mossdale	GAL044	265614	571078	5.4	89.5	8
Moss Ruddock	GAL045	263178	581572	3.0	22.8	0
Loch Muck	GAL046	251300	600800	9.6	233.0	31
Nahinie	GAL047	227858	577126	1.5	54.5	18
Loch Narroch	GAL048	245234	581552	3.3	42.3	0

Table 1. Names, locations and catchment statistics for the sites included in the Galloway region

Neldricken	GAL049	244519	582977	31.4	458.0	0
Ochiltree	GAL050	231704	574517	72.5	505.3	32
Round Loch of						
Dungeon	GAL051	246602	584700	4.1	83.8	19
Round Loch of						
Glenhead	GAL052	245000	580400	12.7	102.5	0
Riecawr	GAL053	243351	593465	85.4	1509.0	40
Ronald	GAL054	226529	564242	47.7	351.3	33
Skelloch	GAL055	240987	596169	5.8	563.0	28
Trool	GAL056	241583	579982	55.6	3271.8	11
Valley	GAL057	244366	581772	33.8	698.0	0
Aldinna	GAL058	236500	593800	4.2	146.5	3
Derclach	GAL059	244403	598991	15.9	131.0	4

Table 2 Response of surface water to change in climate induced responses based on Wright *et al.*, 2006(Perturbations are ramped from 2000-2030).

Factor	Perturbation				
Base case	Current Legislation (CLE) with N dynamics				
Seasalts	Increase deposition of CI, Mg, Na by 50%				
Runoff	Increase discharge by 20%				
Weathering	Increase Ca, Mg, Na, K, SO_4 by 20%				
Decomposition	Derived from ^a CLIMEX, increase decomposition of soil C (1000 mmol m ⁻² yr ⁻¹)				
Organic acids	Increase DOC by 50% in soil and lake				
pCO ₂	Increase pCO_2 by 30% in soil and lake				
All perturbations	All of the above				

^aCLIMEX* van Breemen et al., 1998

Figure 3

Figure 4

