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Scientific Significance Statement

Large spatial studies have shown that human activities are leading to a global increase in the incidence of harmful
cyanobacterial blooms. However, it is unclear how concentrations of a common cyanobacterial toxin (i.e., microcystin) are
changing on an interannual and seasonal basis. This study provides evidence that while temporal patterns are site-specific
within a large prairie lake region, warmer temperatures result in elevated microcystin concentrations, prolonged duration of
elevated toxins levels, and increased probability of exceeding human health thresholds for exposure to microcystin.

Abstract
Incidence of elevated harmful algal blooms and concentrations of microcystin are increasing globally as a result
of human-mediated changes in land use and climate. However, few studies document changes in the seasonal
and interannual concentrations of microcystin in lakes. Here, we modeled 11 yr of biweekly microcystin data
from six lakes to characterize the seasonal patterns in microcystin concentration and to ascertain if there were
pronounced changes in the patterns of potential human exposure to microcystin in lakes of central North
America. Bayesian time series analysis with generalized additive models found evidence for a regional increase
in microcystin maxima and duration but recorded high variation among lakes. During the past decade, warmer
temperatures, but not nutrient levels, led to a marked increase in the number of days when concentrations
exceeded drinking and recreational water thresholds set by the World Health Organization and United States
Environmental Protection Agency.

Growth of human populations and associated industrial
and agricultural activities has altered global biogeochemical

cycles and climate to the detriment of water quality and
aquatic ecosystem services (Dodds et al. 2013; Glibert
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et al. 2014). Excess nitrogen and phosphorus, warmer water
temperatures, and increased thermal stratification promote
the expansion of cyanobacterial harmful algal blooms
(cHABs), resulting in a wide range of water quality issues
(Carey et al. 2012). Among these are the production of neuro-
and hepatotoxins linked to acute and chronic health effects
in humans, livestock, and wildlife (Chorus and Bartram 1999).
Microcystin, a liver toxin produced by cyanobacteria, is a fre-
quent cause of negative human health effects, such that the
World Health Organization (WHO) and the United States
Environmental Protection Agency (EPA) have set health advi-
sories for microcystin concentrations in drinking and recrea-
tional waters (Chorus and Bartram 1999). Prediction of the
timing and extent of toxic blooms and human health risks are
a central concern for management agencies, but forecasts of
the onset, duration, and magnitude of elevated microcystin
concentrations are problematic due to multiple causal path-
ways (Beaulieu et al. 2013; Taranu et al. 2017).

cHABs are increasing in magnitude and spatial extent
(O’Neil et al. 2012), particularly in areas with long histories of
agriculture (Taranu et al. 2015). Total nitrogen and high phy-
toplankton biomass are two of many potential drivers of high
toxin concentrations in lakes across North America (Orihel
et al. 2012; Beaulieu et al. 2013) and the probability of intense
outbreaks is elevated in agricultural landscapes (Taranu
et al. 2017), although high forecast variability along local-to-
continental scales remains a problem (Beaulieu et al. 2013;
Yuan et al. 2014). At the local scale, basin-scale effects may
account for high variability (Vogt et al. 2011), with more
nutrients exerting a paramount effect on cyanobacteria in
shallow polymictic sites, while temperature may control
bloom formation in deep stratified lakes (Taranu et al. 2012),
but further research is needed to identity how regulatory
mechanisms vary among basins within individual lake dis-
tricts (Maheaux et al. 2016).

Climatic effects on plankton phenology may influence the
timing of cHAB outbreaks (Thackeray et al. 2016). Earlier
onsets of spring phytoplankton blooms appear common
(Winder and Schindler 2004; Peeters et al. 2007), while less is
known of the effects of lake warming on late season taxa such
as cyanobacteria. In some lakes, the onset of Microcystis spp.
has advanced 5–7 d per decade over 30 yr (Deng et al. 2014),
with the most intense blooms during years with warmer water
temperatures and lower wind speeds (Zhang et al. 2012).
While short-term seasonal studies of microcystin dynamics
have identified strong seasonality in microcystin concentra-
tions and high interannual variability in magnitude (Hotto
et al. 2008), there are no decadal-scale studies of site-to-site
variation in microcystin dynamics within lake districts.

Microcystin concentrations are expected to vary widely
during the ice-free season because of variation in both
cyanobacterial biomass and cell quota of toxins (Donald
et al. 2011). Although microcystin is usually assumed to be

absent from early year or cold water samples, the limit of
detection for a commonly used technique (enzyme-linked
immunosorbent assay [ELISA]) (0.16 μg L−1) is similar to bio-
logically relevant concentrations for infant drinking water
(0.3 μg L−1) (United States Environmental Protection
Agency 2015). Statistical models are often used to address
challenges associated with high detection limits and left-cen-
sored models characterize microcystin concentrations near
and below the limit of detection by estimating the micro-
cystin concentration of those data. Additionally, because bio-
logical responses are frequently nonlinear, approaches such as
censored generalized additive models (GAMs), which better
describe nonlinear patterns in environmental data, may pro-
vide an improved method of estimating likely toxin concen-
trations in situ.

In this study, we modeled seasonal and interannual trends
in microcystin concentrations using GAMs to test the hypoth-
esis that both the magnitude and duration of detection of a
common cyanobacterial toxin are increasing across six lakes
in a 52,000 km2 drainage area (Supporting Information
Fig. S1). First, we predicted that elevated water temperatures
and nutrient concentrations will coincide with high micro-
cystin concentrations (Orihel et al. 2012). Second, we
predicted that, despite site-specific differences in the rates of
heating, stratification, and morphology (Dröscher et al. 2009),
there will be a prolonged period during which microcystin is
detectable in all lakes. Third, we quantified temporal changes
in the risk of microcystin exposure by lake users at five differ-
ent public health thresholds: (1) EPA infant drinking water
health advisory limit (0.3 μg L−1); (2) WHO drinking water
limit (1.0 μg L−1); (3) EPA adult drinking water health advisory
limit (1.6 μg L−1); (4) WHO moderate risk of health effects
from recreation (> 10 μg L−1), and; (5) WHO high risk of
health effects from recreation (> 20 μg L−1) (Chorus and Bar-
tram 1999; United States Environmental Protection
Agency 2015). Unexpectedly, variation in toxin levels mainly
responded to interannual variation in water temperature,
while nutrient concentrations had little effect on microcystin
concentrations. Although the risk of exceeding human health
thresholds varied by lake, microcystin levels above the WHO
drinking water limit were highly probable in all lakes by mid-
summer, with only a low probability of exceeding high-risk
concentrations.

Methods
Study sites

We tested our predictions in six lakes located along the
52,000 km2 Qu’Appelle River drainage basin in southern Sas-
katchewan, Canada (Supporting Information Fig. S1; Table 1).
Four of the lakes (Buffalo Pound, Pasqua, Katepwa, and
Crooked) are naturally occurring basins with water control
structures and are located along the main stem of the
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Qu’Appelle River. Wascana Lake is a human-made impound-
ment of Wascana Creek, whereas Last Mountain Lake is a
large subsaline naturally occurring lake. Both basins drain into
the Qu’Appelle River mid-reach. Water storage times vary over
10-fold among lakes and years; however, low rates of summer
precipitation lead to low flow conditions and extended resi-
dence times in summer months (Haig et al. 2020). Most lakes
are eutrophic to hypereutrophic, except for mesotrophic Last
Mountain Lake (Finlay et al. 2015). This region experiences a
cool-summer humid continental climate (Köppen Dfb classifi-
cation). While atmospheric warming has advanced the timing
of spring conditions (Finlay et al. 2015), duration of ice cover
is highly variable among years (130–170 d) and ice melt
occurs between March and May (Finlay et al. 2015). Lakes are
all polymictic, although Katepwa Lake occasionally exhibited
thermal stratification by late summer in some years.

Limnological monitoring
Lakes were sampled fortnightly between May 1st and

August 31st (� 8 trips lake−1 yr−1) from 2006 through 2016.
Temperature was measured at 1 m depth intervals using an
YSI-85 multiprobe meter (YSI, Yellow Springs, Ohio), while
transparency was recorded with a 20 cm diameter Secchi disk.
Depth-integrated samples consisted of pooled water samples
from evenly spaced intervals throughout the water column.
These samples were filtered through 0.45 μm pore membrane
filters and stored at 4�C for nutrient analysis. Unscreened sur-
face-water samples were frozen and stored for microcystin
analysis.

Laboratory analyses
Depth-integrated water samples were analyzed for total dis-

solved phosphorus (TDP) and total dissolved nitrogen (TDN)
using standard analytical procedures at the Biogeochemical
Analytical Service Laboratory, University of Alberta, Edmon-
ton, Alberta, Canada (Stainton et al. 1977).

Water for microcystin analysis was thawed and refrozen
three times to lyse cells and release toxins, and filtered
through 1.2 μm nominal pore-size glass-fiber filters. Micro-
cystin concentrations were analyzed with EnviroLogix
QuantiPlate ELISA kits as microcystin-LR equivalents follow-
ing standard protocols. The limit of detection for this kit is
0.16 μg L−1.

Modeling
Correlations between potential predictors and autocorrela-

tions in time series make it difficult to disentangle the unique
effects of predictors that regulate seasonal and interannual
variation in microcystin concentrations. To detect and charac-
terize any within- and between-year trends, we initially
modeled the data using only sampling day of year (DOY) and
year, respectively. After selecting the best-fit model with DOY
and year as covariates, we then tested the additional predic-
tive ability of variables previously shown to regulateT
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cyanobacterial abundance in these lakes (Vogt et al. 2018)
including surface-water temperature, TDN, and TDP.

We modeled microcystin conditionally upon covariates as a
left-censored gamma distributed random variable. We applied this

approach because microcystin concentrations are left censored;
for a concentration xi that is less than or equal to the level of
detection (LoD) of our laboratory method c (c = 0.16 μg L−1), we
only know that the concentration lies in the interval 0 ≤ xi ≤ c.

Fig. 1. (A) Measured microcystin concentrations (points) and median microcystin concentration predicted from the posterior distribution of the GAM
(lines) for each lake, DOY, and year. Note the differences in scale on the y-axis. (B) Median microcystin concentration predicted from the posterior distri-
bution of the GAM (lines) each lake, year, and three days of year (DOY): Late spring (DOY 150), early summer (DOY 200), and late summer (DOY 230).
Panels are organized in order of flow; outflow from the lakes in the top row (Buffalo Pound, Last Mountain, and Wascana) converge and flow into Pasqua
which is upstream of Katepwa, and Crooked. Panels are organized in the same way for all multilake figures.
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Exploratory data analysis suggested that the within- and
between-year trends varied between lakes. The most complex
model fitted a separate tensor product of DOY and year for
each lake via a factor-smooth interaction:

μi = exp α j + f 1 DoYi,Yearið Þ j
� �

,

where the expected microcystin concentration, μi, is modeled
as a smooth interaction of DOY and year for the jth lake via a
tensor product smooth.

A simpler model used a single tensor product of DOY and
year for all lakes, but allowed for lake-specific within- and
between-year marginal effects via additional difference
smooths for both temporal components:
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Fig. 2. Observed vs. fitted microcystin concentrations from the complex model. Fitted values are the median value from 8000 samples drawn from the
posterior distribution. Observed concentrations below the limit of detection of the ELISA kit are indicated in red.
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Fig. 3. (A) Standard deviation associated with individual lakes in the DOY and year model terms for the best fit model. Global splines for the effect of
temperature (B) and nutrient (C) nitrogen spline presented although phosphorus spline showed a similar nonsignificant trend.
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μi = exp α j + f 1 DoYi,Yearið Þ+ f 2 DoYið Þ j + f 3 Yearið Þ j
� �

,

where the tensor product smooth (f1) is applied to all lakes,
and f2 and f3 are the lake-specific smooths, indicated by the
subscripts j.

Difference smooths were implemented using thin plate
spline basis expansions with first-order penalties, which
penalize departure from a flat function representing zero
departure from the common within- and between-year trend.
The simpler model estimated the same common within- and
between-year trends for all sites as the more complex model,
while simultaneously allowing for lake-specific deviations
from the common trend.

To test whether water temperature or nutrient concentra-
tions explained variation beyond the seasonal pattern in
microcystin, we modified the models described above to
include smooth functions of these additional covariates. As
temperature and nutrients are seasonally structured, they
would normally appear to be important predictors of micro-
cystin concentration, even if there were no causal relation—a
phenomenon known as “spurious correlation.” By including
the covariates in a model that already contains a seasonal
smooth of DOY, we required temperature or nutrients to
explain variation over and above the seasonal variation in
order to be identified as having a regulatory effect on micro-
cystin concentration. With this approach, we are estimating
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the additive effects of temperature and nutrients independent
of their already accounted for seasonal effects.

Models were estimated in a Bayesian framework using the
brms package (version 1.10.2; Bürkner 2017) for R (version
3.6.3; R Core Team 2019), using the probabilistic program-
ming language Stan (Carpenter et al. 2017) and Hamiltonian
Monte Carlo with the No U-Turn sampler (NUTS; Hoffman
and Gelman 2014). Each model was estimated using four par-
allel chains with a burnin of 1000 iterations, followed by sam-
pling 2000 observations from the posterior distribution. We
used k-fold cross-validation of the log-predictive density
(Vehtari et al. 2017) to select between candidate models. Fol-
lowing best practice, we performed a number of posterior pre-
dictive checks to assess the fit of the model to the observed
data (Supporting Information Fig. S2). Subsequent inference
was based upon 8000 samples from the model posterior for
each combination of DOY and year; results are presented
using the median and uncertainty via the 0.025 and 0.975
probability quantiles, of the posterior samples. The probability
of exceeding a particular threshold was determined by cou-
nting, for each DOY in each year, the number of posterior pre-
dictive samples that exceeded the threshold divided by the
number of samples.

Results
Although microcystin was detectable in all lakes in most

years (60 out of 65 of the sampling years across all lakes),
toxin concentrations varied by orders of magnitude between
lakes, years, and seasons (Fig. 1A). Measured microcystin con-
centrations varied from < 0.16 μg L−1 (below LoD) to
44.3 μg L−1, with detectable microcystin concentrations in
49.1% of samples (255 out of 519 sampling dates).

Model fit
The complex model, which allowed for the seasonal pat-

tern of median microcystin to vary by year and lake, was the
best-fit model (Fig. 2). The complex model was conservative at
low microcystin concentrations; the model predicted a greater
number of samples below the LoD and a greater number of
detectable samples at microcystin concentrations less than
0.3 μg L−1 than were observed (Fig. 2; Supporting Information
Fig. S2). There was strong coherence between observed and
fitted values in the detectable range (Fig. 2), although lake-
specific differences in coherence remained even after account-
ing for the effects of lake identity in the model. For example,
in Last Mountain and Crooked lakes observed values were
consistently elevated relative to fitted values.

Patterns and regulation of toxin concentration
The seasonal and interannual patterns of microcystin con-

tent varied by lake, with the standard deviation (random
effect variance parameters) of all lakes excluding zero for both
the DOY and year splines (Fig. 3) indicating that seasonal pat-
terns of microcystin were lake and yearspecific. Despite lake-

specific seasonal patterns, microcystin concentrations were
lowest in spring (DOY = 150) and elevated for mid- and late-
summer sample dates (DOY 200 and 230) when considered
across all lakes (Fig. 1B). However, in some years and lakes,
spring microcystin concentrations were elevated (e.g., Buffalo
Pound in 2015 and 2016), while in other cases summer con-
centrations were depressed relative to the lake mean (e.g.,
Wascana Lake in 2009–2011; Crooked Lake in 2008–2009).

Model performance was improved by including a global
spline for the effect of temperature, even after accounting for
seasonal variation (Fig. 3B); warmer surface-water tempera-
tures led to higher microcystin concentrations. Conversely,
the effect size for nutrient concentration was small and effec-
tively removed from the model fit via shrinkage indicating
that any effect of nutrients on microcystin was largely sea-
sonal (Fig. 3).

Probabilities of exceedance
From 2006 to 2016, the probability that the microcystin

concentration exceeded WHO and EPA drinking and recrea-
tional water limits increased in four out of six lakes (Fig. 4;
Supporting Information Fig. S3). There was a > 50% probabil-
ity of exceeding the two lowest thresholds (0.3 and 1 μg L−1)
for part of the growing season in all 11-yr in four lakes. All
lakes had a nonzero probability of reaching concentrations
that confer a moderate risk of acute health effects (10 μg L−1)
in at least 1 yr. The probability of exceeding recreation limits
(10 and 20 μg L−1) increased in the last 2 yr in three lakes that
provide numerous ecosystem services, including in Buffalo
Pound Lake, an urban drinking water reservoir, Pasqua Lake, a
lake bordering Pasqua First Nations, and Katepwa Lake, a
basin with abundant cottages.

Discussion
Analysis of a decade-long, highlyresolved monitoring pro-

gram provided novel insights into the temporal evolution of
cyanobacterial toxins and cHABs. While previous research has
identified a global increase in the magnitude and spatial
extent of cHABs (Taranu et al. 2015), we found high variabil-
ity and nonlinear patterns in microcystin concentrations at
decadal scales in a series of eutrophic lakes representative of
the Canadian Prairies (Orihel et al. 2012; Donald et al. 2015).
Despite the direct hydrological connection of several of the
lakes (Haig et al. 2020), the seasonal and interannual patterns
were site-specific, with local factors modifying regional signals
of climate change. While there is a low probability of exceed-
ing recreational health limits in spring, models revealed that
microcystin was likely present throughout the ice-free season,
with an increasing probability of exceeding higher risk thresh-
olds by midsummer. Despite strong effects of seasonal
changes in temperature, interannual differences in water-col-
umn warming also exerted unique effects on toxin levels
between years and among lakes.
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Microcystin concentrations were frequently below the limit
of detections (337 of 604 samples), reflecting seasonal patterns
in cyanobacteria abundance (Vogt et al. 2018; Hayes
et al. 2019), variable cell quotas of microcystin (Donald
et al. 2011), and detection techniques with high LoD relative
to biologicallyrelevant concentrations. A variety of statistical
approaches have been used to account for the high frequency
of samples below the LoD in microcystin studies including:
(1) using logistic models to describe samples when samples
are above the limit of detection (Yuan et al. 2014; Taranu
et al. 2017); and (2) assigning samples below the LoD an alter-
native value (e.g., zero or one half the limit of detection). The
left-censored approach used herein leads to unbiased and con-
sistent estimators (converge on the true value with finite sam-
pling), and provides estimated values for the censored
observations instead of a probability of detection (cf. hurdle
gamma model of Taranu et al. 2017).

Contrary to our hypothesis, temperature but not nutrients
had a positive effect on microcystin concentration beyond
the seasonal pattern. In fact, there was no effect of nutrient
concentrations on microcystin concentrations (confidence
intervals for the global spline included zero). This finding con-
trasts with prior research demonstrating that nitrogen supply
is a key predictor of microcystin content in Canadian Prairie
lakes (Orihel et al. 2012) and primary production in
Qu’Appelle lakes (Leavitt et al. 2006), but is consistent with
recent research suggesting that temperature has exhibited a
paramount effect on cHABs densities in grassland lakes during
the past 25 yr (Vogt et al. 2018). Although speculative, we
suggest that four factors may interact to obscure the effects of
nutrients, particularly N, on microcystin content. First, nutri-
ent budgets demonstrate that sediments are the main source
of nitrogen to surface waters in our study lakes, but that the
importance of legacy nutrients varies substantially among
lakes (Leavitt et al. 2006; Donald et al. 2015). Second, while
nitrogen fixation is sporadically important in some lakes, the
importance of atmospheric sources of N varies asynchro-
nously among Qu’Appelle lakes (Hayes et al. 2019). Third,
aqueous N pools are composed largely of dissolved organic N
compounds of uncertain availability to cHABs (Hayes
et al. 2019). Fourth, recent evidence suggests that phytoplank-
ton response to N supply may be nonlinear over a wide range
of fluxes (Bogard et al. 2020). In contrast to these multiple
sources of variability, cHABs, especially Microcystis, are known
to respond predictably to increased temperatures (Paerl and
Huisman 2008), potentially increasing the likelihood of
detecting thermal effects.

Consistent with previous efforts to model spatial variation
in microcystin levels (Taranu et al. 2017), we note a high vari-
ability in water-column concentrations of microcystin (range:
LoD to 43.3 μg L−1). Overall microcystin concentrations seen
in this study are comparable to those in other agricultural
areas (Taranu et al. 2017), as well as other regional prairie
lakes (Orihel et al. 2012). For example, while microcystin

concentrations in the moderate- to high-risk categories (> 10
and > 20 μg L−1) were rare in the Qu’Appelle lakes (1.7% of
samples), extremely high microcystin concentrations were
common in a contemporaneous survey of small prairie lakes
(Supporting Information Fig. S4). Fortunately, maximum
microcystin concentrations in both the Qu’Appelle (August
range: 0.16–6.9 μg L−1; median of detects: 0.71 μg L−1) and
regional lakes during 2016 (range: 0.16–43.3 μg L−1; median
of detects: 2.0 μg L−1) were well below those observed in lakes
in the U.S. Great Plains (range: 0.16–13,000 μg L−1; median of
detects: 3 μg L−1; Graham et al. 2010). Given that the north-
ern Great Plains are expected to experience greater than aver-
age regional warming (Dibike et al. 2017), we caution that
human health threats posed by cyanobacteria are likely to
increase in coming decades.

The frequency and spatial extent of cHABs are increasing at
the global scale as a result of nutrient pollution (Glibert
et al. 2014), climate change (Carey et al. 2012), and their
interaction (Rigosi et al. 2014). Here, we demonstrate that
microcystin concentrations were highly variable at the sea-
sonal and interannual scale and that these patterns were lake-
specific, even within a single catchment. However, because
lakes are warming and the growing season is extending
throughout the northern Great Plains (Finlay et al. 2015;
Dibike et al. 2017), we anticipate regional advances in the
onset of cHABs leading to greater risk of exposure earlier in
the year. Our data show that there is high probability of
chronic exposure at low-concentrations in these important
waterbodies and that the likelihood of chronic exposure is
likely increasing in lakes anywhere the ice-free season is
expanding. Finally, we suggest that future research focus on
collecting multidecadal, seasonallyresolved data to identify
more fully the factors regulating increasing microcystin
concentrations.
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