
Chapter 9
Statistical Learning in Palaeolimnology

Gavin L. Simpson and H. John B. Birks

Abstract This chapter considers a range of numerical techniques that lie outside
the familiar statistical methods of linear regression, analysis of variance, and
generalised linear models or data-analytical techniques such as ordination, clus-
tering, and partitioning. The techniques outlined have developed as a result of the
spectacular increase in computing power since the 1980s. The methods make fewer
distributional assumptions than classical statistical methods and can be applied
to more complicated estimators and to huge data-sets. They are part of the ever-
increasing array of ‘statistical learning’ techniques (sensu Hastie et al. (2011). The
elements of statistical learning, 2nd edn. Springer, New York) that try to make sense
of the data at hand, to detect major patterns and trends, to understand ‘what the data
say’, and thus to learn from the data.

A range of tree-based and network-based techniques are presented. These are
classification and regression trees, multivariate regression trees, bagged trees,
random forests, boosted trees, multivariate adaptive regression splines, artificial
neural networks, self-organising maps, Bayesian networks, and genetic algorithms.
Principal curves and surfaces are also discussed as they relate to unsupervised self-
organising maps. The chapter concludes with a discussion of current developments
in shrinkage methods and variable selection in statistical modelling that can help
in model selection and can minimise collinearity problems. These include principal
components regression, ridge regression, the lasso, and the elastic net.
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Introduction

This chapter considers a range of numerical techniques that lie outside the famil-
iar statistical methods of linear regression, analysis of variance, and maximum-
likelihood estimation or data-analytical techniques such as ordination or clustering.
The techniques outlined here have developed as a result of the spectacular increase
in computational power since the 1980s. They make fewer distributional assump-
tions than classical statistical methods and can be applied to more complicated
estimators and to huge data-sets (Efron and Tibshirani 1991; Raymond et al.
2005; Witten and Frank 2005; Hastie et al. 2011). They allow the exploration
and summary of vast data-sets and permit valid statistical inferences to be made
without the usual concerns for mathematical tractability (Efron and Tibshirani
1991) because traditional analytical approaches are replaced by specially designed
computer algorithms (Hastie et al. 2011).

Many of the techniques discussed in this chapter are part of the ever-increasing
battery of techniques that are available for what Hastie et al. (2011) call ‘statistical
learning’. In this, the aim of the numerical analysis is to make sense of the
relevant data, to detect major patterns and trends, to understand ‘what the data
say’, and thus to learn from the data (Hastie et al. 2011). Statistical learning
includes prediction, inference, and data-mining (Hastie et al. 2011). Data-mining
(Ramakrishnan and Grama 2001; Witten and Frank 2005) usually involves very
large data-sets with many objects and many variables. In conventional statistical
analyses, the formulation of the hypotheses to be tested usually follows the
observation of the phenomena of interest and associated data collection. In statistical
learning and data-mining, observations on the numerical properties of previously
collected data can also stimulate hypothesis generation (Raymond et al. 2005).
Hypotheses generated in this manner can be tested using existing independent
data (so-called test-data) or where these are inadequate, by further observations
and data-collection. Data-mining within statistical learning is, like exploratory data
analysis (Juggins and Telford 2012: Chap. 5), clustering and partitioning (Legendre
and Birks 2012a: Chap. 7), and classical ordination (Legendre and Birks 2012b:
Chap. 8), a data-driven hypothesis-generation tool as well as a data-summarisation
technique. Classical statistical techniques such as regression (Birks 2012a: Chap.
2; Blaauw and Heegaard 2012: Chap. 12), temporal-series analysis (Dutilleul
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et al. 2012: Chap. 16), and canonical ordination (Legendre and Birks 2012b:
Chap. 8; Lotter and Anderson 2012: Chap. 18) are model-based hypothesis-testing
techniques. Statistical learning and data-mining can thus play a critical role, not only
in data-analysis but also in the design of future data-collection and research projects.

Statistical learning from large data-sets has provided major theoretical and
computational challenges and has led to a major revolution in the statistical
sciences (Efron and Tibshirani 1991; Hastie et al. 2011). As a result of this
revolution, statistical learning tends now to use the language of machine learning
of inputs which are measured or preset (Hastie et al. 2011). These have some
influence on one of more outputs. In conventional statistical terminology, inputs
are usually called predictors or independent exploratory variables, whereas outputs
are called responses or dependent variables. In palaeolimnology, the outputs are
usually quantitative variables (e.g., lake-water pH), qualitative (categorical 1/0)
variables, (e.g., lake type), or ordered categorical variables (e.g., low, medium,
high water-depth). The inputs can also vary in measurement type and are usually
quantitative variables. In a typical palaeolimnological study, we have an outcome
measurement, usually quantitative (e.g., lake-water pH) or categorical (e.g., fish
present/absent) that we want to predict on a set of features (e.g., modern diatom
assemblages). We have a training-set of data in which we observe the outcome and
feature measurements for a set of objects (e.g., lakes). Using this training-set, we
construct a prediction model or learner that will enable us to predict or infer the
outcome for new unseen objects with their feature measurements (e.g., fossil diatom
assemblages). A good learner is one that accurately predicts such an outcome. The
distinction in output type has resulted in the prediction tasks being called regression
when predicting quantitative outputs and classification when predicting qualitative
outputs (Hastie et al. 2011).

Statistical learning can be roughly grouped into supervised or unsupervised
learning. In supervised learning, the aim is to predict the value of an output measure
based on a number of input measures. It is called supervised because the presence
of the outcome measure(s) can guide the learning process. In unsupervised learning,
there is no outcome measure, only input features. The aim is not to predict but to
describe how the data are organised or clustered and to discern the associations
and patterns among a set of input measures. Table 9.1 summarises the major data-
analytical techniques used in palaeolimnology that are discussed by Birks (2012a:
Chap. 2), Legendre and Birks (2012a, b: Chaps. 7 and 8), Blaauw and Heegaard
(2012: Chap. 12), Juggins and Birks (2012: Chap. 14), Simpson (2012: Chap. 15),
and Lotter and Anderson (2012: Chap. 18) in terms of supervised and unsupervised
statistical learning.

This chapter outlines several tree-based and network-based data-analytical tech-
niques that permit data-mining and statistical learning from large data-sets (over
500–1000 samples and variables) so as to detect the major patterns of variation
within such data-sets, to predict responses to future environmental change, and
to summarise the data as simple groups. These techniques are listed in Table 9.2
in relation to whether they are supervised or unsupervised statistical-learning
techniques.
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Table 9.1 Summary of the major analytical techniques used in palaeolimnology in terms of
supervised and unsupervised statistical learning

Type of statistical learning

Numerical technique Unsupervised Supervised

Clustering (Chap. 7) C
K-means partitioning (Chap. 7) C
Ordination (e.g. PCA) (Chap. 8) C
Canonical ordination (Chaps. 8 and 18) C
Weighted averaging regression and

calibration (Chap. 14)
C

Weighted averaging partial least squares
(Chap. 14)

C
Modern analogue technique (Chap. 15) C
Discriminant analysis (Chap. 2) C
Regression analysis (Chaps. 2 and 12) C

Table 9.2 Summary of statistical machine-learning techniques in terms of supervised and
unsupervised learning

Type of statistical learning

Machine-learning technique Unsupervised Supervised

Classification trees C
Regression trees C
Multivariate regression trees C
Bagging trees C
Boosted trees C
Random forests C C
Multivariate adaptive regression splines C
Artificial neural networks C
Self-organising maps (SOMs) C
X-Y-fused SOMs, Bi-directional Kohonen

networks, and super-organised maps
C

Bayesian belief networks C
Bayesian decision networks C
Genetic algorithms C
Principal curves and surfaces C C
Shrinkage methods (ridge regression, the

lasso, the elastic net)
C

Classification and Regression Trees

Dichotomous identification keys are common in fields such as biology, medicine,
and ecology, where decisions as to the identification of individual specimens or the
presence of disease are reduced to a set of simple, hierarchical rules that lead the
user through the decision-making process. An example that will be familiar to many
readers is the numerous plant identification keys used by field botanists. Computer-
generated versions of these keys were first discussed in the social sciences arising



9 Statistical Learning 253

from the need to cope with complex data and scientific questions resulting from
questionnaire responses leading to the Automatic Interaction Detection programme
of Morgan and Sonquist (1963). Around the same time, similar tree-based method-
ologies were being developed independently in the machine-learning field (e.g.,
Quinlan 1993). The seminal work of Breiman et al. (1984) brought the main
ideas and concepts behind tree-based models into the statistical arena. De’ath
and Fabricius (2000) and Vayssieres et al. (2000) introduced classification and
regression trees to the ecological literature. Fielding (2007) provides a simple
introduction to tree-based modelling procedures in biology. Witten and Frank (2005)
discuss classification and regression trees in the context of data-mining large,
heterogeneous data-sets.

The general idea behind tree-based modelling is to identify a set of decision
rules that best predicts (i) the ‘identities’ of a categorical response variable
(a classification tree), or (ii) a continuous response variable (a regression tree). By
‘best predicts’, we mean minimises a loss function such as least-squares errors

DN D
nX

iD1

.yi � OyN / (9.1)

where DN is the deviance (impurity) of node N, yi refers to the ith observation in
node N and ŷN is the mean of yi in node N. The total deviance (impurity) of a tree
(D) consisting of N nodes is the sum of the deviances of the individual N nodes

D D
NX

iD1

Di (9.2)

Building trees using the recursive binary partitioning method is by far the most
commonly used technique. At each stage of fitting a tree, the algorithm identifies a
split that best separates the observations in the current node into two groups; hence
the binary part of the algorithm’s name. The recursive partitioning aspect refers to
the fact that each node is in turn split into two child nodes, and those child nodes are
subsequently split, and so on in a recursive fashion (see Legendre and Birks 2012a:
Chap. 7). We have glossed over many of the details of model fitting in the above
description of recursive partitioning. We now expand on the detail of how trees are
fitted to data.

The recursive partitioning algorithm starts with all the available data arranged
in a single group or node (see also Legendre and Birks (2012a: Chap. 7) and
Birks (2012b: Chap. 11) for other partitioning techniques that use this type of
recursive algorithm (TWINSPAN, binary partitioning)). The data are a single matrix
of n observations on m variables. The response variable y is also known; if y is a
categorical variable (e.g., species presence/absence, or different species of pollen
or diatom) then a classification tree will be fitted, whereas, if y is a continuous
variable (e.g., lake-water pH or temperature) a regression tree is fitted. Each of the
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m predictor variables is taken in turn and all possible locations for a split within
the variable are assessed in terms of its ability to predict the response. For binary
predictor variables, there is a single possible split (0 or 1). Categorical variables
present a greater number of potential splits. An unordered categorical variable (e.g.,
red, green, blue) with number of levels (categories) L has 2(L – 1) – 1 potential
splits, whilst an ordered categorical variable (e.g., dry < moist < wet < very wet)
conveys L – 1 potential splits. For continuous variables, imagine the observations
lain out on a scale in ascending order of values of the variable. A split may be
located between any pair of adjacent values. If there are U unique values, then each
continuous variable conveys U – 1 potential splits. At each stage in the algorithm all
of these potential split locations need to be evaluated to determine how well making
each split predicts the response. Once the variable and split location that best predict
the response have been identified, the data are separated into two groups on the
basis of the split and the algorithm proceeds to split each of the two child groups
(or nodes) in turn, using the same procedure as outlined above. Splitting continues
until no nodes can be further subdivided or until some stopping criteria have been
met, usually the latter. At this point fitting is complete and a full tree has been fitted
to the data.

An important question remains; how do we quantify which split location best
predicts the response? Splits are chosen on the basis of how much they reduce
node impurity. For regression trees, the residual sums-of-squares (RSS, Eq. 9.1)
about the child-node means or residual sums of absolute deviations (RSAD) from
the child-node medians are used to measure node impurity, although the latter
(RSAD) is of lesser utility with ecological data (De’ath and Fabricius 2000). Several
alternative measures of node impurity (DN) are commonly used in classification
trees, including

(i) deviance

DN D �2
X

k

nN k log.pN k/ (9.3.1)

(ii) entropy

DN D �2
X

k

pN k log.pN k/ (9.3.2)

and
(iii) the Gini index

DN D 1 �
X

k

p2
N k (9.3.3)
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where DN is the node impurity, nNk is the number of observations of class k in the Nth

node, and pNk is the proportion of observations in the Nth node that are of type k. The
overall node impurity evaluated for all possible splits is the sum of the impurities of
the two groups formed by the split.

A final problem we face is how big a tree to grow? Above, we mentioned
that the algorithm will continue until either it cannot split any node further (i.e.,
all nodes have zero impurity) or some stopping criteria are reached (e.g., fewer
than five observations in a node). Such an approach will produce a large, complex
tree that will tend to over-fit the observed data. Such a tree is unlikely to generalise
well and will tend to produce poor out-of-sample predictions. A small tree, on the
other hand, will be unlikely to capture important features in the response. Tree-
size is a tuning parameter that controls the complexity of the fitted tree-model.
The optimal tree-size can be determined from the data using a procedure known
as cost-complexity pruning. The cost-complexity of a tree, CC, is computed as
CC D Timpurity C ’(Tcomplexity), where Timpurity is the impurity of the current tree over
all terminal nodes, Tcomplexity is the number of terminal leaves, and ’ a real number
>0. ’ is the tuning parameter we aim to minimise in cost-complexity pruning, and
represents the trade-off between tree-size and goodness-of-fit. Small values of ’

result in larger trees, whilst large values of ’ lead to smaller trees. Starting with the
full tree, a search is made to identify the terminal node that results in the lowest
CC for a given value of ’. As the penalty ’ on tree complexity is increased, the
tree that minimises CC will become smaller and smaller until the penalty is so great
that a tree with a single node (i.e., the original data) has the lowest CC. This search
produces a sequence of progressively smaller trees with associated CC. The solution
now is to choose a value of ’ that is optimal in some sense. �-fold cross-validation
(Birks 2012a: Chap. 2; Juggins and Birks 2012: Chap. 14) is used to choose the
value of ’ that has the minimal root mean squared error (RMSE). An alternative
strategy is to select the smallest tree that lies within 1 standard error of the RMSE
of the best tree.

Once the final tree is fitted, identified, and pruned, the data used to train the
tree are passed down the branches to produce the fitted values for the response.
In a regression tree, the predicted value is the mean of the observed values of the
response in the terminal node that an observation ends up in. All the observations
that are in the same terminal node therefore get the same fitted value. We say that
regression trees fit a piece-wise constant model in the terminal nodes of the tree.
The fitted values for classification trees are determined using a different procedure;
the majority vote. The classes of all the observations in the same terminal node
provide votes as to the fitted class for that node. The class that receives the highest
number of votes is then the predicted class for all observations in that node.

Palaeolimnological data often contain missing data where, for one reason or
another, a particular measurement on one or more samples is not available (Birks
2012a: Chap. 2; Juggins and Birks 2012: Chap. 14; Juggins and Telford 2012:
Chap. 5). Deleting missing data reduces the number of samples available for analysis
and may also introduce bias into the model if there is a systematic reason for the
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‘missingness’ (Nakagawa and Freckleton 2008). Trees can handle missing data in
the predictor variables in a number of ways. The first is to propagate a sample as far
down the tree as possible until the variable used to split a node is one for which the
data are missing. At that point we assign a fitted value as the average or majority vote
of all the samples that pass through that particular node in the tree. The rationale for
this is that we have sufficient information to make a partial prediction for a sample
with missing data, but we are unable to provide a final prediction because of the
missing data.

An alternative strategy is to use surrogate splits to decide how to propagate a
sample with missing data further down a fitted tree. During the exhaustive search for
split locations, a record is made of which alternative split locations provide a similar
binary split of the data in the current node to that of the best split. Surrogate splits
are those splits that provide the division of the samples in a node that most closely
resembles the division made by using the best split location. When a sample with
missing data is passed down a tree during prediction, the sample proceeds until it
reaches a node where data on the splitting variable is missing. At this point, the best
surrogate split is used to attempt to assign the sample to one of the two child nodes.
If the variable used in the best surrogate split is also missing, the next best surrogate
split is used, and so on until all available surrogate splits have been examined. If it
is not possible to assign the sample to one of the two child nodes, then the sample
is left in the current node and its predicted value is taken as the average or majority
vote of samples passing through the node as previously described.

Surrogate splits are those that produce a similar binary division of a set of
samples to that of the best split for a given node. There may also be split variables
that reduce node impurity almost as much as the best split but do so using a different
predictor variable and result in a different binary partition of a node. Such splits are
known as alternative splits. Replacing the best split with an alternative split might
lead to the fitting of a very different tree simply because of the legacy of having
chosen one predictor over another early on in the tree-building process. Examination
of the alternative splits can help provide a fuller description of the system under
study by highlighting alternative models that explain the training data to a similar
degree as the fitted tree.

High temperature combustion of coal and oil produces, amongst other pollutants
and emissions, spheroidal carbonaceous particles (SCPs) (Rose 2001). Rose et al.
(1994) studied the surface chemistry of a range of SCPs produced by burning
coal, oil, and oil-shale fuels, and used linear discriminant analysis to identify
linear combinations of surface chemistry variables that best distinguished between
particles of the different fuel sources (see Birks 2012a: Chap. 2). To illustrate tree-
based models, we re-analyse these data using a classification tree. The data consist
of 6000 particles (3000 coal, 1000 oil, and 2000 oil-shale). A full classification
tree was fitted using the rpart package (Therneau and Atkinson 2011) for the R
statistical language and environment (R Core Development Team 2011). Apparent
and ten-fold cross-validation (CV) relative error rates for trees of various size up
to the full tree are shown in Fig. 9.1. The tendency for trees to over-fit the training
data is illustrated nicely as the apparent relative error rate continues decreasing as
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Fig. 9.1 Cost complexity and relative error for various sizes of classification trees fitted to the
three-fuel spheroidal carbonaceous particle (SCP) example data. Apparent (open circles) and ten-
fold cross-validated (CV; filled circles) relative error to the simplest tree (size one) are shown. The
tree with the smallest CV relative error has 31 leaves, whilst the smallest tree within one standard
error of the best tree has 18 leaves

the tree is grown and becomes more complex, whilst the ten-fold CV error rate
stabilises after the tree contains 18 nodes or leaves and increases once the size of
the tree exceeds 31 nodes. The values on the x-axis of Fig. 9.1 are the values of the
cost-complexity parameter to which one must prune in order to achieve a tree of the
indicated size. The best sized tree is one consisting of 31 nodes, with a CV relative
error of 0.172 (CV standard error 0.007), and is indicated by the right-most vertical
line. The smallest tree within one standard error of this best tree, is a model with 18
nodes and a CV relative error of 0.177 (CV standard error 0.007), and is indicated
by the left-most vertical line.

Trees between sizes 18 and 48 all do a similar job, but we must guard against
over-fitting the training data and producing a model that does not generalise well,
so we select a tree size using the one standard-error rule and retain the tree with 18
nodes. This tree is shown in Fig. 9.2. The first split is based on Ca, with SCPs having
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Fig. 9.2 Pruned classification tree fitted to the three-fuel spheroidal carbonaceous particle (SCP)
example data. The predicted fuel types for each terminal node are shown, as are the split variables
and thresholds that define the prediction rules

low amounts of Ca passing into the right-hand branch of the tree and those particles
with Ca � 4.385 passing into the left-hand branch. The right-hand branch is further
split on the basis of S, with particles having �35.84 (and Ca < 4.385) classified as
being produced by oil-fired power stations. By convention, the tree is plotted in such
a way that the heights of the stems between nodes indicate the degree of importance
attached to a split in terms of decreased node impurity. The first split on Ca and the
split on S in the right-hand branch of the tree are clearly the most important rules
for predicting SCP fuel type. The remaining splits are largely a fine tuning of these
two main rules. The tree correctly classifies 5680 of the particles in the training
data, giving an apparent error rate of 0.0533. Table 9.3 contains a summary of the
predictions from the classification tree in the form of a confusion matrix. Individual
error rates for the three fuel-types are also shown. Using ten-fold cross-validation
to provide a more reliable estimate of model performance yields an error rate of 0.1
for the classification tree.

Of the machine-learning techniques described in this chapter, with the exception
of artificial neural networks, trees are the most widely used method in palaeoecology
and palaeolimnology, being employed in a variety of ways. Lindblah et al. (2002)
used a classification tree to classify Picea pollen grains from three different species;
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Table 9.3 Confusion matrix
of predicted fuel type for the
three-fuel classification tree

Coal Oil Oil-shale Error rate

Coal 2871 49 118 0.055
Oil 16 938 11 0.028
Oil-shale 113 13 1817 0.063

The rows in the table are the predicted fuel types for
the 6000 spheroidal carbonaceous particles (SCPs)
based on the majority vote rule. The columns are
the known fuel-types. The individual fuel-type er-
ror rates of the classification tree are also shown.
The overall error rate is 0.053

P. glauca, P. mariana, and P. rubens in eastern North America. Seven morpho-
logical measurements were made on approximately 170 grains of each species’
pollen, and were used as predictor variables in the classification tree. An overall
classification tree was fitted to assign grains to one of the three species, as well as
individual species-specific binary classifications which aimed to predict whether a
grain belonged to one of the three pollen taxa or not. Lindblah et al. (2003) used
this approach to assign Picea pollen grains from a sediment core to one of the three
species in late-glacial and Holocene sediments at a number of sites in New England,
USA. Barton et al. (2011) employed a similar approach, using a classification tree
to differentiate between pollen of red pine (Pinus resinosa) and jack pine (Pinus
banksiana) in eastern North America. The habitat characteristics of sites where
terrestrial snails, typical of full-glacial conditions in southern Siberia, are found have
been described using a classification tree (Horsak et al. 2010). Other palaeoecolog-
ical examples include Pelánková et al. (2008). CARTs are widely used in forestry
(e.g., Baker 1993; Iverson and Prasad 1998, 2001; Iverson et al. 1999), ecology
(e.g., Olden and Jackson 2002; Caley and Kuhnert 2006; Spadavecchia et al. 2008;
Keith et al. 2010), biogeography (e.g., Franklin 1998, 2010), species-environment
modelling (e.g., Iverson et al. 1999; Cairns 2001; Miller and Franklin 2002; Thuiller
et al. 2003; Bourg et al. 2005; Kallimanis et al. 2007; Aho et al. 2011), limnology
(e.g., Rejwan et al. 1999; Pyšek et al. 2010), hydrology (e.g., Carlisle et al. 2011),
conservation biology (e.g., Ploner and Brandenburg 2003; Chytrý et al. 2008; Pake-
man and Torvell 2008; Hejda et al. 2009), analysis of satellite data (e.g., Michaelson
et al. 1994; DeFries et al. 2010), and landscape ecology (Scull et al. 2005).

Trees, whilst being inherently simple and interpretable, have a major drawback:
the fitted model has high variance. A small change in the data can often lead to
large changes in the form of the fitted tree, where a very different series of splits is
identified. This makes trees somewhat difficult to interpret reliably; you might get
a very different answer if you collected a different sample of data to fit the model.
This is the downside of such a simple model structure. Solutions to this problem
exist, and they all involve fitting many different trees to the data and averaging the
predictions from each tree in some way. Collectively, these approaches are ensemble
methods and include bagging, boosting, and random forests. We will discuss each
of these techniques in later sections of this chapter.
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Multivariate Regression Trees

The trees described in the previous section are univariate, dealing with a single
response variable. Their extension to the multivariate response case is reasonably
trivial (De’ath 2002; Larsen and Speckman 2004) yet the resulting technique is sur-
prisingly versatile and is a useful counterpart to constrained ordination techniques
such as redundancy analysis (RDA) and canonical correspondence analysis (CCA)
(De’ath 2002; Legendre and Birks 2012a, b: Chaps. 7 and 8). Typically we have a
response matrix of observations on m species for n sites. In addition, observations
on p predictor variables (e.g., lake-water chemistry, climate-related variables) for
the same n sites are available. In multivariate regression trees (MRT), the aim
is to find a set of simple rules from the p predictor variables that best explains
variation in the multivariate species-response matrix. Whilst MRT is closely related
to constrained ordination, it can also be instructive to view MRT as a constrained
clustering technique, where we partition the n observations in k groups or clusters
on the basis of similar species composition and environment (Legendre and Birks
2012a: Chap. 7).

Regression trees use the concept of sum of squared errors as their measure of
node impurity. This is inherently univariate, but can be extended to the multivariate
case by considering sum of squared errors about the multivariate mean (centroid)
of the observations in each node (De’ath 2002). In geometric terms, this amounts
to being simply the sum of squared Euclidean distances of sites about the node
centroid. In all other respects, the fitting and pruning of multivariate trees is the same
as for univariate regression trees. However, the interpretation of multivariate trees
requires additional techniques owing to the more complex nature of the response
variable being modelled.

The Euclidean distance is often not suitable for use with ecological data as
it focuses on absolute values, does not ignore or downweight double zeros, and
imposes a linear framework on the analysis (Legendre and Birks 2012b: Chap. 8).
MRTs can be adapted to work with any dissimilarity coefficient via direct decom-
position of a supplied dissimilarity matrix to derive within-node sum of squared
distances between node members. De’ath (2002) calls this method distance-based
MRTs (db-MRTs). Note that in db-MRTs the within-node sum-of-squares are not
computed with respect to the node centroid but instead with respect to pairs of
samples. Minimising the sum of all pair-wise squared distances between samples
within nodes is equivalent to computing the within-node sum-of-squares where
the response data are species abundances. The response data in a db-MRT are a
dissimilarity matrix computed using a chosen dissimilarity or distance coefficient
(see Legendre and Birks 2012b: Chap. 8). As such, the raw data are not available
during fitting to enable computation of the node centroids. Therefore, db-MRT uses
the sum of pair-wise within-node distances as the measure of node impurity.

Univariate trees describe the mean response and a single tree-diagram can be
used to convey in a simple fashion a large amount of information about the fitted
model and the mean response. In MRTs, the mean response is multivariate, being
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the mean abundance of each species for the set of samples defined by the tree nodes.
A biplot is a natural means for displaying the mean response. De’ath (2002) suggests
that principal component analysis (PCA) (Legendre and Birks 2012b: Chap. 8)
be used as the base plot, with PCA being performed on the fitted values of the
response (the mean abundance for each species in each of the MRT terminal nodes).
The observed data are also shown on the biplot. The samples themselves can thus
be located in the biplot about their node centroid. Species loadings can be added
to the biplot either as simple PCA loadings (species scores), in which case they are
represented as biplot arrows, or as a weighted mean of the node means, in which
case the species are represented as points in ordination space. The branching tree
structure can also be drawn on the biplot to aid visualisation.

Earlier, we mentioned that MRTs can be viewed as a constrained form of cluster
analysis. From the description of the technique we have provided, it should be clear
that MRTs find k groups of samples that have the lowest within-group dispersion
for the kth partition. If the constraints or predictor variables were not involved in
the analysis then MRTs would be a way of fitting a minimum variance-cluster
analysis (Legendre and Birks 2012a: Chap. 7). However, because the constraints
are included in a MRT analysis, the identification of the group structure in the data
is supervised, with groups being formed by partitioning the response variables on
the basis of thresholds in the constraints. Chronological or constrained clustering
and partitioning have a long tradition in palaeoecology and several numerical
approaches to the problem of zoning stratigraphical data have been suggested (e.g.,
Gordon and Birks 1972, 1974; Gordon 1973; Birks 2012b: Chap. 11; Legendre and
Birks 2012a: Chap. 7). One proposed solution to the problem is the binary divisive
procedure using the sum-of-squares criterion (SPLITLSQ) method of Gordon and
Birks (1972) which fits a sequence of b boundaries to the stratigraphical diagram,
where b 2 f1, 2, : : : , n � 1g. The boundaries are placed to minimise the within-
group sums-of-squares of the groups formed by the boundaries. The process is
sequential or hierarchical; first the entire stratigraphical sequence is split into two
groups by the placement of a boundary that most reduces within-group sums of
squares. Subsequently, one of the groups formed by positioning the first boundary is
split by the placement of a second boundary, and so on until b boundaries have been
positioned. The SPLITLSQ approach is exactly equivalent to the MRT when the
Euclidean distance is used (see Legendre and Birks 2012b: Chap. 8). The utility of
the MRT as a means of zoning stratigraphical diagrams is that the cross-validation
procedure provides a simple way to assess the number of groups into which the
sequence should be split.

To illustrate MRTs and to emphasise the constrained clustering nature of the
technique, we turn to the classic Abernethy Forest pollen data of Birks and
Mathewes (1978) (see Birks and Gordon 1985 for details). We fit a MRT to the
pollen percentage data without transformation. A plot of the apparent and cross-
validated relative error as a function of the cost-complexity parameter (or tree-size)
for the MRT-fit to the Abernethy Forest data is shown in Fig. 9.3. Of the tree-sizes
considered, the minimum cross-validated relative error is achieved by a tree with
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Fig. 9.3 Cost complexity and relative error for various sizes of multivariate regression trees fitted
to the late-glacial and early-Holocene Abernethy Forest pollen sequence. Apparent (open circles)
and ten-fold cross-validated (CV; filled circles) relative error to the simplest tree (size one) are
shown. The tree with the smallest CV relative error has 8 leaves, whilst the smallest tree within
one standard error of the best tree has 6 leaves

eight terminal nodes (seven splits), whilst the one standard-error rule would select
the six-node sized tree. We select the latter and show the pruned, fitted MRT in
Fig. 9.4. The first split is located at 7226 radiocarbon years BP and the second
at 9540 BP. These two splits account for much larger proportions of the variance
in the pollen data than the subsequent splits, as shown by the heights of the bars
below the splits. The bar charts located at the terminal nodes in Fig. 9.4 provide a
representation of the mean abundance for each pollen type over the set of samples
located in each terminal node. A better representation of the mean response is given
by the tree biplot (Fig. 9.5). The first split separates the samples dominated by Pinus,
Quercus, and Ulmus pollen from the other samples, and is aligned with the first
principal component (PC) axis. The second PC axis separates a group of samples
characterised by Juniperus, Corylus, and Betula pollen.

MRTs have proved a relatively popular machine-learning technique in the
palaeoenvironmental sciences. Davidson et al. (2010a) employed MRT to infer
simultaneously the densities of zooplanktivorous fish and aquatic macrophytes from
cladoceran species composition. The MRT was applied to a training-set of 39 lakes,



9 Statistical Learning 263

Age>=7225.5

Age>=9539.5

Age< 11180

Age>=9826 Age< 11696

Age< 7225.5

Age< 9539.5

Age>=11180

Age< 9826 Age>=11696

814.1 815.89 591.06 1131

4786.8

4127.2

Betula
Pinus sylvestris
Ulmus
Quercus
Alnus glutinosa
Corylus−Myrica
Salix
Juniperus communis
Calluna vulgaris
Empetrum
Gramineae
Cyperaceae
Solidago−type
Compositae
Artemisia
Caryophyllaceae
Sagina
Silene
Chenopodiaceae
Epilobium−type
Papilionaceae
Anthyllis vulneraria
Astragalus alpinus
Ononis−type
Rosaceae
Rubiaceae
Ranunculaceae
Thalictrum
Rumex acetosa−type
Oxyria−type
Parnassia palustris
Saxifraga spp1
Saxifraga spp2
Sedum
Urtica
Veronica

Fig. 9.4 Pruned multivariate regression tree (MRT) fitted to the late-glacial and early-Holocene
Abernethy Forest pollen sequence. The major stratigraphic zones in the pollen stratigraphy are
identified by the MRT. The bar charts in the terminal nodes describe the abundance of the individual
species in each zone. The numbers beneath the bar charts are the within-zone sums of squares

using the cladoceran taxa as response variables and 14 environmental variables as
predictors. The resulting pruned MRT had six clusters of samples resulting from
splits on zooplanktivorous fish density (ZF) and plant volume infestation (PVI)
and explained 67% of the variance in the species data. Davidson et al. (2010b)
then applied their MRT model in conjunction with redundancy analysis (Legendre
and Birks 2012b: Chap. 8) to cladoceran assemblages from a sediment core from
Felbrigg Lake to investigate past changes in fish abundance and macrophyte
abundance. Herzschuh and Birks (2010) used MRT in their investigation of the
indicator value of Tibetan pollen and spore taxa in relation to modern vegetation
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and climate. Their analysis showed that annual precipitation was the most important
climatic variable in grouping the pollen counts in modern assemblages, with a
value of �390 mm precipitation identified as a critical threshold. Temperature was
identified as then playing a role in separating the two groups of pollen assemblages
resulting from the ‘low’ and ‘high’ precipitation split. The resulting MRT produced
four pollen groupings associated with four climate types: dry and warm, dry and
cool, wet and warm, and wet and cool. Other palaeolimnological examples include
Amsinck et al. (2006) and Bjerring et al. (2009). Surprisingly, MRTs do not
appear to have been widely used in ecology or biogeography except in a recent
biogeographical study by Chapman and Purse (2011).

Other Types of Tree-Based Machine-Learning Methods
(Bagging, Boosted Trees, Random Forests, Multivariate
Adaptive Regression Splines)

Earlier, we mentioned the instability problem of single-tree based models, which
can be viewed as sampling uncertainty in the model outputs. If we were to take
a new sample of observations and fit a model to those and use it to predict for a
test-set of observations, we would get a different set of predictions for the test-set
samples. If this process were repeated many times for each observation in the test-
set, a posterior distribution of predicted values would be produced. The mean of
each of these posterior distributions can be used as the predictions for the test-set
samples, and in addition, the standard error of the mean or the upper and lower 2.5th
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quantiles can be used to form uncertainty estimates on the predictions. In general,
however, taking multiple samples of a population is not feasible. Instead, we can use
the training-set observations themselves to derive the posterior distributions using
bootstrap re-sampling (see Birks 2012a: Chap. 2; Juggins and Birks 2012: Chap. 14;
Simpson 2012: Chap. 15). Such approaches are often termed ensemble or committee
methods.

This general description applies neatly to bagging and random forests, but less
so to the technique of boosting and not at all to multivariate adaptive regression
splines (MARS: Friedman 1991). Boosting employs many trees in a manner similar
to bagging and random forests, but each additional tree focuses on the hard-to-
predict observations in the training-set, thereby learning different features in the
data (Schapire 1990; Freund 1995; Friedman et al. 2000; Friedman 2001; Hastie
et al. 2011). MARS, on the other hand, relaxes the piece-wise constant models fitted
in the nodes of regression trees to allow piece-wise linear functions and in doing
so discards the hierarchical nature of the simple tree structure (Friedman 1991).
Whilst the switch to piece-wise linear functions is not that dramatic in itself, MARS
employs these piece-wise linear functions in a flexible way combining several
such functions to fit regression models capable of identifying complex, non-linear
relationships between predictor variables and the response (Friedman 1991). Prasad
et al. (2006) provide a comprehensive comparison of these newer tree techniques.

Bagging

Bagging, short for bootstrap aggregating, is a general method, proposed by Breiman
(1996), for producing ensembles for any type of model, though it has typically been
applied to tree-based models. In palaeolimnology, when we perform bootstrapping
(Efron and Tibshirani 1993) to estimate calibration-function errors and provide
sample-specific errors (Birks et al. 1990; Juggins and Birks 2012: Chap. 14;
Simpson 2012: Chap. 15), we are using bagging. The idea is quite simple and draws
upon the power of Efron’s (1979) bootstrap to produce a set or ensemble of models
that replicate the uncertainty in the model arising from sampling variation.

In bagging, a large number of models, b, is produced from a single training-set
by drawing a bootstrap sample from the training-set with which to fit each model.
Recall that a bootstrap sample is drawn from the training-set with replacement,
and that, on average, approximately two thirds of the training-set samples will
be included in the bootstrap sample. The remaining samples not selected for the
bootstrap sample are set to one side and are known as the out-of-bag (OOB) samples.
A tree model without pruning (or any other model) is fitted to this bootstrap sample.
The fitted tree is used to generate predictions for the OOB samples, which are
recorded, as are the fitted values for the in-bag samples. This procedure is repeated
b times to produce a set of b trees. The sets of fitted values for each training-set
sample are averaged to give the bagged estimates of the fitted values. In the case of
a regression tree the mean is used to average the fitted values, whilst the majority
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Table 9.4 Confusion matrix
of predicted fuel type for the
bagged three-fuel
classification tree (number of
trees D 500)

Coal Oil Oil-shale Error rate

Coal 2794 50 116 0.056
Oil 18 930 6 0.025
Oil-shale 188 13 1878 0.100

The rows in the table are the predicted fuel types for
the 6000 spheroidal carbonaceous particles (SCPs)
based on the majority vote rule over the ensemble
of trees. The columns are the known fuel-types.
The individual fuel-type error rates of the bagged
classification tree are also shown. The overall error
rate is 0.066

vote rule is used for classification trees, where each of the b bagged trees supplies a
vote as to the fitted class for each observation, and the class with the largest number
of votes is selected as the fitted class for that observation. Alternatively, posterior
class probabilities can be produced for each observation from the set of bagged
classification trees (though not using the relative proportions of votes for each class)
and the class with the highest posterior probability is taken as the predicted class.
The same procedures are used to provide bagged predictions for new observations
not included in the training-set.

Table 9.4 shows the confusion matrix for a bagged classification tree model
applied to the three fuel-type SCP data analysed earlier. Error rates for the three
fuel-types are also shown. These statistics were computed using the OOB samples
and are honest, reliable estimates of the true error rates as opposed to those for the
single classification tree we produced earlier. The overall error rate for the bagged
model is 0.066 (6.6%), a modest improvement over the single classification tree (k-
fold cross-validation error D 0.1). Table 9.4 contains a summary of the predictions
from the bagged classification tree. The predictions for the Coal and Oil classes
are very similar to the apparent predictions from the classification tree (Table 9.3).
The main difference between the bagged tree and the single tree is in their abilities
to discriminate between coal- and oil-shale-derived particles, with the single tree
being somewhat over-optimistic in its ability to discriminate these two fuel-types.
The bagged tree gives a more honest appraisal of its ability to discriminate; the
error rate for the oil-shale class is similar to the overall k-fold CV error rate of the
classification tree.

Model error for bagged regression trees can be expressed as RMSE

RMSE D
vuut

nX

iD1

. Oyi � yi / =n (9.4)

using the fitted values, but this is an apparent error statistic and is not reflective of the
real expected error. Instead, we can compute the equation above for each observation
using only the OOB predictions. The OOB predictions are for the samples not used
to fit a given tree. As such they provide an independent estimate of the model
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error when faced with new observations. A similar quantity can be computed for
classification trees and is known as the error rate (number of misclassifications /
number of OOB observations). Again, only the OOB samples should be used in
generating the error rate of the model to achieve an honest error estimate.

How does bagging help with the tree instability problem? Individual trees are
unstable and hence have high variance. Model uncertainty is a combination of bias
(model error or mean squared error: MSE) and variance (the variation of model
estimates about the mean). Bagging improves over single tree models because
averaging over b trees reduces the variance whilst leaving the bias component
unchanged, hence the overall model uncertainty is reduced. This does not hold for
classification trees, however, where squared loss is not appropriate and 0–1 loss is
used instead, as bias and variance are not additive in such cases (Hastie et al. 2011).
Bagging a good classification model can make that model better but bagging a bad
classification model can make the model worse (Hastie et al. 2011).

The improved performance of bagged trees comes at a cost; the bagged model
loses the simple interpretation that is a key feature of a single regression tree or
classification tree. There are now b trees to interpret and it is difficult, though not
impossible, to interrogate the set of trees to determine the relative importance of
predictors. We discuss this in the following section on the related technique of
random forests.

Random Forests

With bagged trees, we noted that reduction in model uncertainty is achieved through
variance reduction because averaging over many trees retains the same bias as that
of a single tree. Each of the b trees is statistically identically distributed, but not
necessarily independent because the trees have been fitted to similar data-sets. The
degree of pair-wise correlation between the b trees influences the variance of the
trees and hence the uncertainty in the model; the larger the pair-wise correlation, the
larger the variance. One way to improve upon bagging is to reduce the correlation
between the b trees. Random forests (Breiman 2001) is a technique that aims
to do just that. Prasad et al. (2006) and Cutler et al. (2007) provide accessible
introductions to random forests from an ecological view-point, whilst Chap. 15 of
Hastie et al. (2011) provides an authoritative discussion of the method.

The key difference between bagging as described above and random forests is
that random forests introduces an additional source of stochasticity into the model-
building process (Breiman 2001), which has the effect of de-correlating the set of
trees in the ensemble of trees or the forest (Hastie et al. 2011). The tree-growing
algorithm, as we saw earlier, employs an exhaustive search over the set of available
explanatory variables to find the optimal split criterion to partition a tree node into
two new child nodes. In standard trees and bagging, the entire set of explanatory
variables is included in this search for splits. In random forests, however, the set
of explanatory variables made available to determine each split is a randomly
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determined, usually small, subset of the available variables. As a result, each tree
in the forest is grown using a bootstrap sample, just as with bagging, and each split
in each and every tree is chosen from a random subset of the available predictors.

The number of explanatory variables chosen at random for each split search is
one of two tuning parameters in random forests that needs to be chosen by the user.
The number of explanatory variables used is referred to as m and is usually small.
For classification forests, the recommended value is bp

pc, and bp=3c is suggested
for regression forests, where the brackets represent the floor (rounding down to the
nearest integer value), and p is the number of explanatory variables (Hastie et al.
2011). The recommended minimum node size, the size in number of observations
beyond which the tree growing algorithm will stop splitting a node, is one and five
for classification and regression forests, respectively (Hastie et al. 2011). This has
the effect of growing large trees to each bootstrap sample with the result that each
individual tree has low bias.

The trees are not pruned as part of the random-forest algorithm; the intention
is to grow trees until the stopping criteria are met so that each tree in the forest
has a low bias. Each of the individual trees is therefore over-fitted to the bootstrap
sample used to create it, but averaging over the forest of trees effectively nullifies
this over-fitting. It is often claimed that random forests do not over-fit. This is not
true, however, and, whilst the details of why this is the case are beyond the scope
of this chapter, it is worth noting that as the number of fully grown trees in the forest
becomes large, the average of the set of trees can result in too complex a model and
consequently suffer from increased variance. Section 15.3.4 of Hastie et al. (2011)
explains this phenomenon, but goes on to state that using fully grown trees tends not
to increase the variance too much and as such we can simplify our model building
by not having to select an appropriate tree depth via cross-validation.

Random forests suffer from the same problem of interpretation as bagged trees
owing to the large number of trees grown in the forest. Several mechanisms have
been developed to allow a greater level of interpretation for random forests. We will
discuss two main techniques: (i) variable importance measures and (ii) proximity
measurements.

The importance of individual predictors is easy to identify with a single tree as
the relative heights of the branches between nodes represent this, and alternative
and surrogate splits can be used to form an idea of which variables are important
at predicting the response and which are not. With the many trees of the bagged
or random forest ensemble this is not easy to do by hand, but is something that
the computer can easily do as it is performing the exhaustive search to identify
splits. Two measures of variable importance are commonly used: (i) the total
decrease in node impurity averaged over all trees and (ii) a measure of the mean
decrease in the model’s ability to predict the OOB samples before and after
permuting the values of each predictor variable in turn (Prasad et al. 2006). Recall
that node impurity can be measured using several different functions. In random
forests, the first variable importance measure is computed by summing the total
decrease in node impurity for each tree achieved by splitting on a variable and



9 Statistical Learning 269

averaging by the number of trees. Variables that are important will be those that
make the largest reductions in node impurity. The accuracy importance measure is
generated by recording the prediction error for the OOB samples for each tree, and
then repeating the exercise after randomly permuting the values of each predictor
variable. The difference between the recorded prediction error and that achieved
after permutation is averaged over the set of trees. Important variables are those
that lead to a large increase in prediction error when randomly permuted. The mean
decrease in node impurity measure tends to be the most useful of the two approaches
because there is often a stronger demarcation between important and non-important
variables compared with the decrease in accuracy measure, which tends to decline
steadily from important to non-important predictors.

A novel feature of random forests is that the technique can produce a proximity
matrix that records the dissimilarity between observations in the training-set. The
dissimilarity between a pair of observations is based on the proportion of times
the pair is found in the same terminal node over the set of trees in the model.
Samples that are always found in the same terminal node will have zero dissimilarity
and likewise those that are never found in the same node will have dissimilarity
of 1. This matrix can be treated as any other dissimilarity matrix and ordinated
using principal coordinate analysis (see Legendre and Birks 2012b: Chap. 8) or
non-metric multidimensional scaling (see Legendre and Birks 2012b: Chap. 8) or
clustered using hierarchical clustering or K-means partitioning (see Legendre and
Birks 2012a: Chap. 7).

We continue the three-fuel SCP example by analysing the data using random
forests. Five hundred trees were grown using the recommended settings for
classification forests; minimum node size of five, m D bp

21c D 4. Figure 9.6
shows the error rate for the OOB samples of the random-forest model as additional
trees are added to the forest. The overall OOB error rate and that of each of the
three fuel-types is shown. Error rates drop quickly as additional trees are added to
the model, and stabilise after 100–200 trees have been grown. Table 9.5 shows the
confusion matrix and error rates for the individual fuel-types for the random-forest
model. The overall error rate is 6.6%. Figure 9.7 shows the variable importance
measures for the overall model, with Ca and S, and, to a lesser extent, Si, having
the largest decrease in node impurity as measured by the Gini coefficient. A similar
result is indicated by the decrease in the accuracy measure, although it is more
difficult to identify clear winners using this index. These same variables are also
important for predicting the individual fuel-types, where Fe and Mg also appear as
important indicators for the Oil and Oil-shale fuel-types (Fig. 9.8).

Random forests, whilst having recently been used in ecology as a method for
broad-scale prediction of species presence/absence or ecological niche modelling
(Iverson and Prasad 2001; Benito Garzón et al. 2006, 2008; Lawler et al. 2006;
Rehfeldt et al. 2006; Cutler et al. 2007; Peters et al. 2007; Brunelle et al. 2008;
Iverson et al. 2008; Williams et al. 2009; Chapman 2010; Chapman et al. 2010;
Franklin 2010; Dobrowski et al. 2011; Vincenzi et al. 2011), have been little used
in palaeoecology, which is surprising given the accuracy, simplicity, and speed of
the method relative to other machine-learning techniques. Brunelle et al. (2008) use
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Table 9.5 Confusion matrix
of predicted fuel type for the
three-fuel random forest
model (number of
trees D 500)

Coal Oil Oil-shale Error rate

Coal 2809 8 183 0.064
Oil 56 925 19 0.075
Oil-shale 128 0 1872 0.064

The rows in the table are the predicted fuel types for
the 6000 spheroidal carbonaceous particles (SCPs)
based on the majority vote rule over the ensemble
of trees. The columns are the known fuel-types.
The individual fuel-type error rates of the random
forest classifier are also shown. The overall error
rate is 0.066

random forests to investigate the climatic variables associated with the presence,
absence, or co-occurrence of lodgepole and whitebark pine in the Holocene,
whilst Benito Garzón et al. (2007) employ random forests to predict tree species
distribution on the Iberian Peninsula using climate data for the last glacial maximum
and for the mid-Holocene. Other palaeoecological examples include Goring et al.
(2010) and Roberts and Hamann (2012). Random forests are widely used in
genomic and bioinformatical data-analysis (e.g., Cutler and Stevens 2006; van Dijk
et al. 2008) and epidemiology (e.g., Furlanello et al. 2003).
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Boosting

In the discussion of bagging and random forests, we saw that modelling involves
a trade-off between the bias and the variance of the fitted model. Bagging and
random forests attempt to reduce the variance of a fitted model through the use of an
ensemble of trees in place of the single best tree. These techniques do not reduce the
bias of the fitted model. Boosting, a loosely related technique, uses an ensemble of
models (in our case trees) to reduce both the bias and the variance of a fitted model.
Boosting is an incredibly powerful technique that today relates to a whole family of
approaches. Here we restrict our discussion to gradient boosting, which also goes
by the name multiple additive regression trees (MART), and its variant stochastic
gradient boosting. Hastie et al. (2011) contains a lengthy discussion of boosting
and is essential reading for anyone attempting to use the technique for modelling
data. Elith et al. (2008) is a user friendly, ecologically-related introduction to both
the theory and practice of fitting boosting models (see also Witten and Frank 2005;
De’ath 2007).

As with bagging and random forests, boosting begins from the realisation that
it is easier to identify and average many rough predictors than it is to find one, all
encompassing, accurate, single model. The key difference with boosting is that it
is sequential; additional models are added to the ensemble with the explicit aim
of trying to improve the fit to those observations that are poorly modelled by the
previous trees already included in the model. With bagging and random forests each
new tree is fitted to a bootstrap sample of the training data with no recourse to
how well any of the previous trees did in fitting observations. As such, bagging
and random forests do not improve the bias in the fitted model: they just attempt to
reduce the variance. Boosting, in contrast, aims to reduce the bias in the fitted model
by focussing on the observations in the training data that are difficult to model, or
are poorly modelled, by the preceding set of trees. In the terminology of Hastie et al.
(2011), boosting is a forward, stage-wise procedure.

Our discussion proceeds from the point of view of regression; this includes
models for discrete responses such as logistic or multinomial regression thus encom-
passing classification models (Birks 2012a: Chap. 2). We have already mentioned
loss functions, a function or measure, such as the deviance, that represents the
loss in predictive power due to a sub-optimal model (Elith et al. 2008). Boosting
is an iterative computational technique for minimising a loss function by adding
a new tree to the model that at each stage in the iteration provides the largest
reduction in loss. Such a technique is said to descend the gradient of the loss
function, something known as functional gradient descent. For boosted regression
trees, the algorithm starts by fitting a tree of a known size to the training data.
This model, by definition, provides the largest reduction in the loss function. In
subsequent iterations, a tree is fitted to the residuals of the previously fitted trees,
which maximally reduces the loss function. As such, subsequent trees are fitted to
the variation that remains unexplained after considering the previous set of trees.
Each subsequent tree added to the ensemble has as its focus those poorly modelled
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observations that are not well fitted by the combination of previous trees, and as
such can have quite different structures incorporating different variables and splits
into the tree. Boosting is a stage-wise procedure because the preceding trees in the
ensemble are not altered during the current iteration, which contrasts with step-wise
procedures where the entire model is updated at each iteration (step-wise regression
procedures, for example). Elith et al. (2008) summarise the boosted ensemble as a
“linear combination of many trees::: that can be thought of as a regression model
where each term is a tree.”

A further important aspect of boosting is the concept of regularisation. The
logical conclusion of the boosting algorithm if no restriction on the learning rate was
imposed is that the sequence of trees could be added until the training-set samples
were perfectly explained and the model was hopelessly over-fitted to the data. In the
standard regression setting, the number of terms in the model is often constrained
by dropping out covariates (variables) or functions thereof, via a set of step-wise
selection and elimination steps. A better, alternative approach is to fit a model with
many terms and then down-weight the contributions of each term using shrinkage,
as is done in ridge regression (Hoerl and Kennard 1970) or the lasso (Tibshirani
1996) (see below). With ridge regression or the lasso, the shrinkage that is applied
is global, acting on the full model. In boosting, shrinkage is applied incrementally to
each new tree as it is added to the ensemble and is controlled via the learning rate, lr,
which, together with the number of trees in the ensemble, tr, and tree complexity,
tc (the size of the individual trees), form the set of parameters optimised over by
boosted trees.

Stochasticity was introduced into bagging and random forests through the use of
bootstrap samples, where it introduces randomness that can improve the accuracy
and speed of model fitting and help to reduce over-fitting (Friedman 2002) at the
expense of increasing the variance of the fitted values. In boosting, stochasticity is
introduced through randomly sampling a fraction, f, of the training samples at each
iteration. This fraction is used to fit each tree. f lies between 0 and 1 and is usually
set to 0.5 indicating that 50% of the training observations are randomly selected to
fit each tree. In contrast to bagging and random forests, the sampling is done without
replacement.

Recent work (Elith et al. 2008) on boosting has shown that it works best when
learning is slow and the resulting model includes a large (>1,000) number of trees.
This requires a low learning rate, say lr D 0.001. We still need a way of being alerted
to over-fitting the model so as to guide how many trees should be retained in the
ensemble. If using stochastic boosting, each tree has available a set of OOB samples
with which we can evaluate the out-of-sample predictive performance for the set of
trees up to and including the current tree. A plot of this predictive performance as
new trees are added to the ensemble can be used to guide as to when to stop adding
new trees to the ensemble. If stochastic boosting is not being used, other methods
are required to guide selection of the number of trees. An independent test-set can
also be employed, if available, in place of the OOB samples. Alternatively, k-fold
cross-validation (CV) can be used if computational time and storage are not issues,
and there is evidence that this procedure performs best for a wide range of test data-
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sets (Ridgeway 2007). In k-fold cross-validation, the training data are divided into k
subsets of (approximately) equal size. A boosting model is fitted to the k-l subsets
and the subset left out is used as an independent test-set. A large boosting model
is fitted and the prediction error for the left-out subset is recorded as the number of
trees in the model increases. This process is repeated until each of the k subsets has
been left out of the model-building process, and the average CV error is computed
for a give number of trees. We take as the number of trees to retain in the model as
that number of trees with lowest CV error.

Tree complexity, tc, is a tuning parameter in boosting; it affects the learning
rate required to yield a large ensemble of trees, and also determines the types of
interactions that can be fitted by the final model. Earlier, we saw how trees were
able to account flexibly for interactions between predictor variables by allowing
additional splits within the separate nodes of the tree, namely the interaction
that only affects the predicted values for the set of samples in the node that is
subsequently split by a further predictor. The more complex the individual trees in
the boosted model are, the more quickly the model will learn to predict the response
and hence will require fewer trees to be grown before over-fitting, for a fixed
learning rate. The complexity of the individual trees should ideally be chosen to
reflect the true interaction order in the training data. However, this is often unknown
and selection via an independent test-set or optimisation-set will be required.

To illustrate the fitting of boosted regression trees we demonstrate their use in a
calibration setting using the European Diatom Database Initiative (EDDI) combined
pH-diatom training-set. The combined pH data-set contains diatom counts and
associated lake-water pH measurements for 622 lakes throughout Europe with
a pH gradient of 4.32–8.40. As an independent test-set, we applied a stratified
random sampling strategy to select a set of 100 samples from across the entire
pH gradient by breaking the pH gradient into ten sections of equal pH interval
and subsequently choosing ten samples at random from within each section of the
gradient. The remaining 522 samples formed the training-set to which a boosted
regression-tree model is fitted using the gbm package (Ridgeway 2010) for the R
statistical software. The squared error loss-function was employed during fitting
and we explored various learning rates of 0.1, 0.01, 0.001, and 0.0001 and tree
complexities of 2, 5, 10, and 20 to identify the best set of learning parameters
to predict lake-water pH from the diatom percentage abundance data. Preliminary
exploration suggested that a large number of trees was required before error rates
stabilised at their minimum and that a modest degree of tree complexity is required
to optimise model fit, so we fitted models containing 20,000 trees. Throughout, we
assessed model fit using five-fold cross-validation on-line during model fitting.

Figure 9.9a shows the value of the loss-function as trees are added to the model
for a variety of learning rates. A tree complexity of 10 was used to build the models.
The two fastest learning rates (0.1 and 0.01) converge quickly to their respective
minima and then slowly start to over-fit, as shown by the increasing CV squared
error loss. Conversely, the model fitted using the smallest learning rate is slow to fit
the features of the training data-set and has still to converge to a minimum squared
error loss when 20,000 trees had been fitted. The best fitting of all the models shown
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Fig. 9.9 Relationship between squared error loss, number of boosted trees, and learning rate (lr)
for a boosted regression tree fitted to the European Diatom Database Initiative (EDDI) calibration
set predicting lake-water pH from diatom species composition. (a) k-fold cross-validated and
apparent squared error loss for the tuned boosted regression tree fitted to the EDDI data (b). The
apparent squared error loss is derived using the training data to test the model and continues to
decline as additional trees are added to the ensemble, indicating over-fitting. The thick tick mark
on the x-axis of panel (b) is drawn at the optimal number of trees (14,255)

is the one with a learning rate of 0.001, which reaches a minimum squared error loss
after approximately 14,000 trees. Figure 9.9b shows the CV squared error loss for
this model alongside the training-set based estimate or error. We can clearly see that
the boosted-tree model over-fits the training data converging towards an error of 0
given sufficient trees. This illustrates the need to evaluate model fit using a cross-
validation technique, such as k-fold CV, or via a hold-out test-set that has not taken
part in any of the model building.

The learning rate is only one of the parameters of a boosted regression tree
for which optimal values must be sought. Tree complexity, tc, controls the size of
the individual trees: the more complex the trees, the higher the degree of flexible
interactions that can be represented in the model. Models that employ more complex
trees also learn more quickly than models using simpler trees. This is illustrated in
Fig. 9.10, which shows the effect of tree complexity on the squared error loss as trees
are fitted for several values of complexity and for two learning rates (lr D 0.001 and
0.0001). The effect of tree complexity on the speed of learning is easier to see in
the plot for the slowest learning rate (right hand panel of Fig. 9.10). The simplest
trees, using tree complexities of 2 and 5, respectively, converge relatively slowly
compared to the boosted trees using trees of complexity 10 or 20. Of the latter two,
there is little to choose between the loss functions once tree complexity reaches a
value of 10. Figure 9.10 combines the three parameters that users of boosted trees
need to set to control the fitting of the model, and illustrates the key feature of
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requiring a sufficiently slow learning rate to allow averaging over a large number of
trees, whilst using trees of sufficient complexity to capture the degree of interaction
between predictors in the training data.

We can assess the quality of the boosted-tree calibration model by using the best
fitting model (lr D 0.001, tc D 10, nt D 13,000). This model was chosen as the one
giving the lowest five-fold CV error over a grid of tuning parameters. The RMSEP
of the boosted tree for the test-set is 0.463 pH units. On the basis of Fig. 9.9a, one
might consider using the model with lr D 0.01, tc D 10, and nt D 2500 instead of
the best model as it has a similar, though slightly higher, squared error loss than the
best model identified. Using this model gives a RMSEP for the test-set samples of
0.533, which is substantially higher than the best model. For comparison, we fitted
weighted averaging (WA) calibration models (Juggins and Birks 2012: Chap. 14)
to the EDDI training data using inverse and classical deshrinking and then applied
each of these models to the held-out test-set. RMSEP for the WA models was 0.467
and 0.439 using inverse and classical deshrinking, respectively. There is little to
choose between these models, with WA with classical deshrinking having the lowest
hold-out sample RMSEP. It is always surprising how well the simple heuristic WA
performs on such a complex problem of predicting lake-water pH from hundreds
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of diatom species. In this example, one of the state-of-the-art machine-learning
methods is unable to beat WA in a real-world problem!

Weighted averaging, whilst being very simplistic and powerful, is not a very
transparent modelling technique as we do not have any useful variable importance
measures that we can use to interrogate a WA calibration model. Bagged trees and
random forests employ various variable importance measures to indicate to the
user which predictors are important in modelling the response. In boosted trees,
Friedman (2001) proposed to use the relative improvement in the model by splitting
on a particular variable, as used in single tree models, as a variable importance
measure in a boosted tree model but to average this relative importance over all
trees produced by the boosting procedure. Figure 9.11 shows a needle plot of the 20
most important predictor variables (diatom species) for the boosted pH calibration
model fitted to the EDDI data-set. The most important taxon is Eunotia incisa
(EU047A), an acid-tolerant diatom, whilst Achnanthes minutissima agg. (AC048A)
is a diatom that tends to be found in circum-neutral waters. The suite of taxa shown
in Fig. 9.11 are often identified as indicator species for waters of different pH, so it is
encouraging that the boosted model has identified these taxa as the most important
in predicting lake-water pH (see Legendre and Birks 2012a: Chap. 7). Ecological
examples of boosted regression trees are given by Elith et al. (2008), De’ath and
Fabricius (2010), and Dobrowski et al. (2011).

Multivariate Adaptive Regression Splines

Multivariate adaptive regression splines (MARS) (Friedman 1991; Friedman and
Meulman 2003; Leathwick et al. 2005) are an attempt to overcome two perceived
problems of the single regression tree. The hierarchical nature of the tree imposes
a severe restriction on the types of model that can be handled by such models.
A change made early on in growing the tree is very difficult to undo with later
splits, even if it would make sense to change the earlier split criteria in light of
subsequent splits. Furthermore, as regression trees (as described above) fit piece-
wise constant models in the leaves of the tree, they have difficulties fitting smooth
functions; instead, the response is approximated via a combination of step functions
determined by the split criteria. MARS does away with the hierarchical nature of
the tree and uses piece-wise linear basis functions, combined in an elegant and
flexible manner, to approximate smooth relationships between the responses and
the predictors.

MARS proceeds by forming sets of reflected pairs of simple, piece-wise linear
basis functions. These functions are defined by a single knot location, and take the
value 0 on one side of the knot, and a linear function on the opposite side. Each
such basis function has a reflected partner, where the 0-value region and the linear-
function region are reversed. Figure 9.12 shows an example of a reflected pair of
basis functions for variable or covariate x, with a single knot located at t D 0.5.
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The solid line is denoted (x � t)C, with the subscript C indicating that we take the
positive part of the function only, with the negative part set to 0. As a result, the
basis function illustrated by the solid line in Fig. 9.12 is zero until the knot location
(x D 0.5) is exceeded. The reflected partner has the form (t � x)C, and is illustrated
by the dashed line in Fig. 9.12. For each quantitative covariate in the training data,
a reflected pair of basis functions is formed by setting each t to be a unique value
taken by that covariate. Qualitative covariates are handled by forming all possible
binary partitions of the levels of a categorical covariate to form two groups. A pair
of piece-wise constant functions are formed for each binary partition, which act as
indicator functions for the two groups formed by the binary partition, and are treated
like any other reflected pair of basis functions during fitting.

Model building in MARS is similar to step-wise linear regression except the en-
tire set of basis functions is used as input variables and not the covariates themselves.
The algorithm begins with a constant term, the intercept, and performs an exhaustive
search over the set of basis functions to identify the pair that minimises the model
residual sum-of-squares. That pair and their least-squares coefficients are added
to the model-set of basis functions and the algorithm continues. Technically the
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Fig. 9.12 Examples of a reflected pair of basis functions used in multivariate adaptive regression
splines. The basis functions are shown for the interval (0,1) with a knot located at t D 0.5. See main
text for details

algorithm finds the pair that, when multiplied by a term already included in the
model, results in the lowest residual sum-of-squares, but as the only term in the
model at the first iteration is the constant term, this amounts to finding the pair
of basis functions that affords the largest improvement in fit. At the second and
subsequent steps of the algorithm, the products of each existing model-term with
the set of paired basis functions are considered and the basis function that results
in the largest decrease in residual sum-of-squares is added to the model along with
its partner basis function and their least-squares coefficients. The process continues
until some stopping criteria are met; for example, the improvement in residual sum-
of-squares falls below a threshold or a pre-specified number of model terms is
reached. An additional constraint is that a single basis function pair may only be
involved in a single product term in the model. Because products of basis functions
are considered, interactions between covariates are handled naturally by the MARS
model. The degree of interactions allowed is controlled by the user; if the degree is
set to 1, an additive model in the basis functions is fitted.

At the end of this forward stage of model building a large model of basis
functions has been produced that will tend to strongly over-fit the training data.
A backwards elimination process is used to remove sequentially from the model the
term that causes the smallest increase in the residual sum-of-squares. At each stage
of the forward model-building phase, we added a basis function and its partner
to the model during each iteration. The backwards elimination stage will tend to
remove one of the pair of basis functions unless both contribute substantially to
the model-fit (Hastie et al. 2011). A generalised cross-validation (GCV) procedure
is used to determine the optimal model-size as ordinary cross-validation is too
computationally expensive to apply to MARS for model-building purposes. The size
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of a MARS model is not simply the number of model terms included within it; a
penalty must be paid for selecting the knots for each term. The effective degrees of
freedom (EDF) used by a MARS model is given by EDF D œ C c((œ � 1)/2), where
œ is the number of terms in the model, and c is a penalty term on the number of knots
((œ � 1)/2) and is usually equal to 3, or 2 in the case of an additive MARS model
where no interactions are allowed. The EDF term is part of the GCV criterion that
is minimised during the backwards elimination phase.

MARS was originally derived using least squares to estimate the coefficients for
each basis function included in the model. The technique is not restricted to fitting
models via least squares, however. The scope of MARS can be expanded by esti-
mating the basis function coefficients via a generalised linear model (GLM), which
allows the error distribution to be one of the exponential family of distributions (see
Birks 2012a: Chap. 2).

We illustrate MARS via a data-set of ozone measurements from the Los Angeles
Basin, USA, collected in 1976. A number of predictor variables are available;
inter alia, air temperature, humidity, wind speed, and inversion base height and
temperature. The aim is to predict the ozone concentration as a function of the
available predictor variables. The variance in ozone concentrations increases with
the mean concentration and as negative concentrations are not possible, a sensible
fitting procedure for MARS is to estimate the coefficients of the model terms via a
gamma GLM and the inverse link function (Birks 2012a: Chap. 2). Only first-order
interaction terms were considered during fitting. The MARS model was fitted using
the R package earth (Milbarrow 2011). A MARS model comprising ten terms,
including the intercept and seven predictor variables, was selected using the GCV
procedure. Four model terms involve the main effects of air temperature (two terms),
pressure gradient1 (DPG), and visibility. The remaining terms involve interactions
between variables. A summary of the model terms and the estimated coefficients is
shown in Table 9.6, whilst Fig. 9.13 displays the model terms graphically. The upper
row of Fig. 9.13 shows the main effect terms. A single knot location was selected
for air temperature at 58ıF, with terms in the model for observations above and
below this knot. Both air-temperature terms have different coefficients as illustrated
by the differences in slopes of the fitted piece-wise functions. Note that the terms
are non-linear on the scale of the response due to fitting the model via a gamma
GLM.

Variable importance measures are also available to aid in interpreting the model
fit, and are shown in Fig. 9.14 for the ozone example. The ‘number of subsets’
measurement indicates how many models, during the backward elimination stage,
included the indicated term. The residual sum-of-squares (RSS) measure indicates
the reduction in RSS when a term is included in one of the model subsets considered.
The decrease in RSS is summed over all the model subsets in which a term is
involved and is expressed relative to the largest summed decrease in RSS (which
is notionally given the value 100) to aid interpretation. The GCV measure is

1Pressure gradient between Los Angeles airport (LAX) and Daggert in mm Hg.
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Table 9.6 MARS model
terms and their coefficients Term Ǒ

Intercept 0.0802293
h(temp-58) �0.0007115
h(58-temp) 0.0058480
h(2-dpg) 0.0018528
h(200-vis) �0.0002000
h(wind-7) � h(1069-ibh) 0.0000681
h(55-humidity) � h(temp-58) 0.0000196
h(humidity-44) � h(ibh-1069) 0.0000005
h(temp-58) � h(dpg-54) 0.0000435
h(258-ibt) � h(200-vis) 0.0000010

The h() terms refer to basis functions, the numeric value inside
the parentheses is the knot location for the piece-wise linear
function, and the name inside the parentheses is the variable
associated with the basis function temp Air Temperature (ıF),
dpg pressure gradient (mm Hg) from LAX airport to Daggert,
vis visibility in miles, wind wind speed in MPH, ibh tempera-
ture inversion base height (feet), humidity percent humidity at
LAX airport, ibt inversion base temperature (ıF)

computed in the same manner as the RSS measure but involves summing the GCV
criterion instead of RSS. A variable might increase the GCV score during fitting,
indicating that it makes the model worse. As such, it is possible for the GCV
importance measure to become negative. For the ozone model, air temperature is
clearly the most influential variable, with the remaining variables included in the
model all being of similar importance. The model explains approximately 79% of
the variance in the response (76% by the comparable GCV measure). Ecological
and biogeographical applications of MARS are relatively few and include Moisen
and Frescino (2002), Leathwick et al. (2005, 2006), Prasad et al. (2006), Elith and
Leathwick (2007), Balshi et al. (2009), and Franklin (2010).

Artificial Neural Networks and Self-organising Maps

Artificial neural networks (ANNs) and self-organising maps (SOMs) were devel-
oped for applications in artificial-intelligence research and are often conflated into a
general machine-learning technique that is based on the way biological nervous sys-
tems process information or generate self-organising behaviour. However, despite
these similarities, ANN and SOM are best considered from very different vantage
points. There are also a large number of variations that fall under the ANN or
SOM banner – too many to consider here. Instead we focus on the techniques most
frequently used in ecological and limnological research (Lek and Guégan 1999).
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Fig. 9.13 Partial response plots for the multivariate adaptive regression spline (MARS) model
fitted to the ozone concentration data from the Los Angeles basin

Artificial Neural Networks

An artificial neural network is a particularly flexible, non-linear modelling technique
that is based on the way neurons in human brains are thought to be organised
(Chatfield 1993; Warner and Misra 1996; Witten and Frank 2005; Ripley 2008).
The term ANN today encompasses a large number of different yet related modelling
techniques (Haykin 1999). The most widely used form of ANN is the forward-feed
neural network, which is sometimes known as a back-propagation network or multi-
layer perceptron. The general form of a forward-feed ANN is shown in Fig. 9.15.
Configurations for both regression and classification settings are shown. The main
feature of a forward-feed ANN is the arrangement of ‘neurons’ or units into a
series of layers. The input layer contains m units, one per predictor variable in the
training data-set, whilst the output layer contains units for the response variable or



9 Statistical Learning 283

0

1

2

3

4

5

6

7

8

9

Te
m

pe
ra

tu
re

 −
 4

V
is

ib
ili

ty
 −

 8

H
um

id
ity

 −
 3

IB
H

 −
 5

IB
T

 −
 7

D
P

G
 −

 6

W
in

d 
sp

ee
d 

−
 2

0

20

40

60

80

100
N

um
be

r 
of

 s
ub

se
ts

R
el

at
iv

e 
G

C
V

 o
r 

R
S

S

N subsets
RSS
GCV

Fig. 9.14 Variable importance measures for the covariates in the multivariate adaptive regression
spline (MARS) model fitted to the ozone concentration data from the Los Angeles basin. See main
text for details of the various measures. RSS residual sum-of-squares, GCV generalised cross-
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variables. In the univariate regression setting, there is a single unit in the output layer
(Fig. 9.15a). In a classification setting, where the response takes one of k possible
classes, there are k units in the output layer, one per class. The predicted class in
a classification ANN is the largest value taken by Yk for each input. Between the
input and output layers a hidden layer of one or more units is positioned. Units in
the input layer each have a connection to each unit in the hidden layer, which in
turn have a connection to every unit in the output layer. The number of units in the
hidden layer is a tuning parameter to be determined by the user. Additional hidden
layers may be accommodated in the model, though these do not necessarily improve
model fit. In addition, bias units may be connected to each unit in the hidden and
output layers, and play the same role as the constant term in regression analysis.

Each unit in the network receives an input signal, which in the case of the input
layer is an observation on m predictor variables, and outputs a transformation of
the input signal. Where a unit receives multiple inputs, a transformed sum of these
inputs is outputted. Bias units output a value of C1. The connections between units
are represented as lines in Fig. 9.15 and each is associated with a weight. The output
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Fig. 9.15 Structure of a forward-feed, back-propagation neural network in a regression (a) and a
classification (b) setting. A single hidden layer (Zc) is shown. The lines connecting the layers of
the network carry weights that are estimated from the data during fitting to minimise the loss of the
final model. It is clear that the response is modelled as a function of a series of linear combinations
(Zc) of the input data

signal from an individual unit is multiplied by the connection weight and passed on
to the next layer in the network along the connection. The weights are the model
coefficients and optimal values for these are sought that best fit the response data
provided to the network during training.

We said that the inputs to a unit are transformed. The identity function (Birks
2012a: Chap. 2) is generally used for the input layer, as a result the input data for
the ith sample are passed on to the hidden layer units untransformed. The hidden
layer generally employs a non-linear transformation, typically a sigmoid function
of the form

¢ .sv/ D 1 =.1 C e�v/ (9.5)

where v is the sum of the inputs to the unit and s is a parameter that controls the
activation rate. Figure 9.16 shows the sigmoid function for various activation rates.
As s becomes large, the function takes the form of a hard activation or threshold
once a particular value of the inputs is reached. The origin can be shifted from 0 to
�0 by replacing the terms in the parentheses on the left hand side of Eq. 9.5 with
s(� � �0). If an identity function is used in place of the sigmoid, the entire model
becomes a simple linear regression. For the output layer, an identity function is used
for regression models, whilst the softmax function, which produces positive outputs
that sum to one, is used for classification.

The connection weights are estimated using gradient descent, known as back-
propagation in the ANN field. For regression ANNs, sum-of-squares error is used
to estimate the lack-of-fit for the current set of weights, whilst cross-entropy is
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Fig. 9.16 Sigmoid function used to non-linearly transform inputs to hidden layer units in an
artificial neural network (ANN) shown using a variety of activation rates s. See main text for
further details

generally used in classification. The weights are sequentially updated to improve the
fit of the model and each pass over the data is termed a training epoch. Generally,
a large number of training epochs is performed to optimise the weights and thus
improve the accuracy of the model. The set of weights that provides the global
minimum of the model error is likely over-fitted to the training data. To alleviate
over-fitting, training is often stopped early, before the global minimum is reached
(Hastie et al. 2011). A validation data-set is useful in determining the appropriate
stopping point, where the prediction error for the validation samples begins to
increase. An alternative procedure, called weight-decay, provides a more explicit
regularisation of the model weights, and is analogous to that used in ridge regression
(see below). Details of the weight-decay procedure are given in Sect. 11.5.2 of
Hastie et al. (2011).

It is instructive to consider what the units in the hidden layer represent; they are
linear combinations of the input variables with the loading (or weighting) of each
input variable in each unit Zc given by the connection weight of the relevant unit in
the input layer. We can then think of the forward-feed ANN as a general linear model
in the linear combinations Zc of the inputs (Hastie et al. 2011). A key feature of the
forward-feed ANN is that the connection weights that define the linear combinations
Zc are learnt from the data during training. In other words, a set of optimal linear
combinations of the inputs are sought to best predict the response.

ANNs are often considered black-box prediction tools (Olden and Jackson 2002)
owing to how ANNs learn patterns from the data and encode this information
in the connection weights, which makes it more difficult to extract and interpret
than more simple, parametric techniques. To some extent this is a valid criticism;
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however the connection weights are available for inspection along with the linear
combinations of the inputs reconstructed (Zc) from these. Several methods for
inspecting ANN model structure have been proposed, including the connection
weighting approach of Olden et al. (2004) to derive a measure of variable im-
portance, sensitivity analyses (Lek et al. 1996a), and various pruning algorithms
(Bishop 1995, 2007; Despagne and Massart 1998; Gevrey et al. 2003). An example
of a pruning algorithm applied in a palaeoecological context is the skeletonisation
procedure of Racca et al. (2003), which for the Surface Waters Acidification
Programme (SWAP) diatom-pH training-set allowed the removal of 85% of the
taxa from the training data without drastically affecting model performance. This
pruning also improved the robustness of the resulting calibration (Racca et al. 2003)
(see Juggins and Birks 2012: Chap. 14).

Several factors can affect optimisation in ANNs which ultimately can determine
the quality of the resulting model. We have already mentioned the potential for over-
fitting the training data. In addition, the number of hidden layers and units within
those layers needs to be decided. In general a single hidden layer will be sufficient,
but additional layers can speed up model fitting. The number of units in the hidden
layer controls the flexibility of functions of the input data that can be described
by the model. Too many hidden units and the model may over-fit the data quickly,
whilst too few units will unnecessarily restrict the very flexibility that ANNs afford.
The optimal number of units in the hidden layer can be determined analytically
(Bishop 1995, 2007; Ripley 2008) but in practice, treating the number of units as
a tuning parameter to be optimised using k-fold cross-validation is generally used.
Özesmi et al. (2006) reviewed other aspects of ANN assessment.

ANNs, when compared to the majority of the machine-learning tools described
in this chapter, have been used relatively frequently to model palaeoecological
data, particularly as a means of implementing calibration models (Borggaard and
Thodberg 1992; Næs et al. 1993; Wehrens 2011). At one time ANNs were becoming
a popular means of producing palaeoenvironmental reconstructions as they were
seen as highly competitive when compared to modern analogue technique (MAT),
weighted averaging (WA), and weighted-averaging partial least squares (WAPLS)
because the calibration functions produced using ANNs had comparatively low
root mean squared errors of prediction (RMSEP). Malmgren and Nordlund (1997)
compared ANNs with Imbrie and Kipp factor analysis (IKFA), MAT, and soft
independent modelling of class analogy (SIMCA) on a data-set of planktonic
foraminifera and achieved substantially lower RMSEP than the other techniques.
Racca et al. (2001) compared ANN, WA, and WAPLS calibration models for a
data-set of diatom counts from 76 lakes in the Quebec region of Ontario, Canada.
In this study, ANNs gave modest improvements in RMSEP over WA and WAPLS.
Other palaeoecological applications of ANNs include Peyron et al. (1998, 2000,
2005), Tarasov et al. (1999a, b), Malmgren et al. (2001), Grieger (2002), Nyberg
et al. (2002), Racca et al. (2004), Barrows and Juggins (2005), and Kucera et al.
(2005). Limnological, environmental, biogeographical, and ecological examples are
numerous, as reviewed by Lek and Guégan (2000). Illustrative examples include
Lek et al. (1996a, b), Recknagel et al. (1997), Guégan et al. (1998), Lindstrom et al.
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(1998), Brosse et al. (1999), Manel et al. (1999a, b), Spitz and Lek (1999), Olden
(2000), Belgrano et al. (2001), Cairns (2001), Černá and Chytrý (2005), Steiner
et al. (2008), and Chapman and Purse (2011).

The popularity of ANNs in palaeoecology has waned recently following the
discovery that many published ANN-derived calibration functions may have greatly
under-estimated model RMSEP by failing to account for spatial autocorrelation
in the training data (Birks 2012a: Chap. 2). The autocorrelation problem can be
accounted for using appropriate cross-validation techniques, such as the h-block
approach of Burman et al. (1994) as used by Telford and Birks (2009). Typically,
when one accounts for the dependence structure in the input data, the performance of
ANNs is comparable to or worse than the best fits produced using WA and WAPLS.

Self-organising Maps

The self-organising map (SOM; also known as a self-organising feature map)
is a relatively popular machine-learning tool for mapping and clustering high-
dimensional data (Wehrens 2011), which has been used in a wide variety of
ecological, environmental, and biological contexts (see e.g., Chon 2011 for a recent
overview, and Giraudel and Lek 2001 for a comparison of SOMs and standard
ordination techniques used in palaeoecology). The SOM is superficially similar to
an artificial neural network, but this analogy only gets one so far and it is simpler to
consider SOMs as a constrained version of the K-means clustering or partitioning
method (Legendre and Birks 2012a: Chap. 7). As we will see, SOMs are also similar
to principal curves and surfaces (see below and Hastie et al. 2011) and can be likened
to a non-linear form of principal component analysis (PCA).

In a SOM, p prototypes are arranged in a rectangular or hexagonal grid of units of
pre-defined dimension (number of rows and columns). The number of prototypes,
p, is usually small relative to the dimensionality (number of variables or species)
of the input data. A prototype is assigned to each grid unit. The SOM algorithm
forces each of the samples in the input data to map onto one of the grid units during
an iterative learning process. The goal of the SOM is to preserve the similarities
between samples such that similar samples map on to the same or neighbouring units
in the grid, whilst dissimilar samples are mapped on to non-neighbouring units.

At the start of the algorithm, the p prototypes are initialised via a random
sample of p observations from the input data. Alternatively, the first two principal
components of the input data can be taken and a regular grid of points on the
principal component plane used as the prototypes (Hastie et al. 2011). Regardless
of how the prototypes are initialised, each is characterised by a codebook vector
that describes the typical pattern for the unit to which it has been assigned. If
the prototypes are initialised using a random sample from the input data, then
the codebook vector for an individual prototype will be the values of the species
abundances, for example, in the sample assigned to that prototype. The aim of the
SOM algorithm is to update these codebook vectors so that the input data are best
described by the small number of prototypes.
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During training, samples from the input data are presented to the grid of units
in random order. The distance between the species abundances in the presented
sample and the codebook vectors for each of the units is determined, usually via
the Euclidean distance, but other distance measures can be used. The unit whose
codebook vector is closest, i.e., most similar, to the presented sample is identified as
the winning unit. The winning unit is then made more similar to the presented
sample by updating its codebook vector. Geometrically, we can visualise this update
as moving the unit in the m-dimensional space towards the location of the presented
sample. By how much the codebook vector of the winning unit is updated (moved
towards the presented sample) is governed by the learning rate, ˛, which is typically
a small value of the order of 0.05. The learning rate is gradually decreased to 0
during learning to allow the SOM to converge.

Earlier, we noted that the SOM can be considered a constrained form of K-means
clustering or partitioning: the constraint is spatial and arises because neighbouring
units in the grid are required to have similar codebook vectors. To achieve this, not
only is the winning unit updated to become more similar to the presented sample,
but those units that neighbour the winning unit are also updated in the same way.
Which units are considered neighbours of the winning unit is determined via another
tuning parameter, r, which can be thought of as the distance within which a grid
unit is said to be a neighbour of the winning unit. This distance, r, is topological,
i.e., it is the distance between units on the grid, not the distance between the units
in the m-dimensional space defined by the input data. The value of r, and hence
the size of the neighbourhood around the winning unit, is also decreased during
training; the implication is that as learning progresses, eventually only the winning
units are updated. The SOM algorithm proceeds until an a priori-defined number of
learning iterations, known as epochs, has been performed. The standard reference
work for SOM is Kohonen (2001) where further details of the learning algorithm
can be found.

As described above, SOM is an unsupervised technique, learning features of the
data from the data themselves. However, the simplicity of the SOM algorithm allows
scope for significant adaptation. One such adaptation allows SOMs to be used in a
supervised fashion. If additional, dependent variables are available then these can be
modelled alongside the independent or predictor variables. Such a supervised SOM
then allows for predictions of the dependent variable to be made at new values of
the predictor variables. One simple means of achieving this is to take an indirect
approach and fit the SOM without regard to the dependent (response) variable(s)
of interest and then take as the predicted value for each sample in the input the
mean of the values of the response for all the samples that end up in the same grid
unit as the sample of interest. This approach is very much in the spirit of the indirect
ordination approach (Legendre and Birks 2012b: Chap. 8), but cannot be considered
truly supervised.

Kohonen (2001) considered a supervised form of SOM and suggested building
the map on the concatenation of the response variables (Y) and the predictor
variables (X). In practice however, it may be difficult to find a scaling of X and Y
such that both contribute similarly in the analysis. Indeed, if one of X or Y contains
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many more variables than the other, it will dominate the distance computations
when identifying the winning unit. Melssen et al. (2006) introduce two variations of
supervised SOMs that have wide applicability as general techniques for analysing
palaeoenvironmental data: (i) the X-Y Fused Kohonen Network (XYF) and (ii) the
Bi-directional Kohonen Network (BDK). Both approaches make use of two grids
of prototypes, the first providing a mapping of X, the second a mapping of Y, into
low dimensions. The networks are trained in the same manner as described for the
unsupervised SOM, but differ in how the two mappings are combined to identify
the winning unit during each learning epoch.

XYF networks operate on a fused distance, where the total distance between each
observation and the prototypes is a weighted sum of the scaled distance between
each observation and the prototypes on the individual maps. The winning unit is
the one that has the lowest weighted sum distance to the observation. The relative
weighting is given by ˛, taking values between 0 and 1, with the distances on the
X map weighted by ˛(t) and the distances on the Y map weighted by 1 � ˛(t).
The distances between observations and prototypes on the individual maps are
normalised by the maximum distance on each map so that the maximal distance on
each map is 1. This scaling allows for very different magnitudes of distances on the
maps, such as might arise when computing distances where X and Y are measured in
different units or where different dissimilarity coefficients are used for the different
maps. This latter point is particularly useful when applying the supervised SOM in
a classification setting where the distance used for the response Y should consider
group membership (0, 1). In such cases, the Jaccard distance (Legendre and Birks
2012b: Chap. 8; often called the Tanimoto distance in the chemometrics literature
where the XYF and BDK methods were developed) is generally used. The t in ˛(t)
indexes the learning epoch, allowing ˛ to be decreased linearly during learning.
Initially, this results in the determination of the winning unit being dominated by
distances to prototypes on the X map. As learning proceeds, ˛ is slowly decreased
such that at the end of learning, distances to prototypes on both the X and Y maps
contribute equally. It should be noted that a single epoch entails presenting, at
random, each observation in the training-set to the maps.

The BDK network is similar to that described for the XYF network, but differs in
that the two maps are considered individually during separate passes over the data.
First, in the forward pass, the winning unit on the X map is identified as a weighted
sum of distances on the two maps, as described above, and updated in the usual
SOM manner. A reverse pass over the data is then performed, where the winning
unit in the Y map is determined, again via a weighted sum of distances on the two
maps, but this time using the X map updated in the forward pass. Learning proceeds
in this alternating manner until convergence or an upper limit of epochs is reached.
In practice there is generally little difference between the networks learned via the
XFY or BDK methods (Melssen et al. 2006).

The XYF supervised SOM can be generalised to any number of maps, where
the winning unit is identified as a weighted sum of distances over i maps, each
map weighted by ˛i, where †˛i D 1, and the distances on each map scaled so
the maximal distance is 1. Such a network is known as a super-organised SOM.
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One problem with supervised SOMs as presented above is that in a regression
setting, the number of possible fitted (or predicted) values of the response Y is
limited by the number of units in the grid used. The fitted values for each observation
are the mean of the response over the set of observations that map to the same unit.
The predicted value for new observations is likewise the mean of the response for
the training samples mapped to the same unit as each new observation. This is the
same problem as identified for regression trees; in the terminology introduced there,
a piece-wise constant model is fitted in the units of the trained supervised SOM.
Melssen et al. (2007) combine the BDK or XYF networks with partial least squares
regression (PLS) (Martens and Næes 1989; Wehrens 2011: Juggins and Birks 2012:
Chap. 14) to overcome this deficiency in supervised SOMs.

We illustrate the utility and applicability of SOMs for palaeoecological data anal-
ysis using the SWAP-138 diatom calibration data-set, using the R package kohonen
(Wehrens and Buydens 2007). Figure 9.17 shows output from a SOM fitted to the
standardised, log-transformed (except pH, and conductivity was excluded from this
analysis) water-chemistry for the 138-lake training-set. Figure 9.17a shows how the
mean distance to the winning unit (per epoch) improves as the network is trained.
The SOM appears to have converged after approximately 60 iterations. There is a
clear conductivity signal in the data that is captured by the SOM (Fig. 9.17b), with
units to the left of the map identified by high values of various ions and high pH
and alkalinity. The upper right section of the map is characterised by dilute, low pH
waters, whilst very low pH waters with high aluminium concentrations are located in
the lower right area of the map. High total organic carbon (TOC) concentrations are
found towards the lower left. The average distance of observations to the unit onto
which they map is a measure of the quality of the mapping achieved by the SOM,
and is shown in Fig. 9.17c for the SWAP water-chemistry SOM. There are few
units with high mean distances, which suggests that the low-dimensional mapping
closely fits the data. Figure 9.17d shows which unit each of the 138 SWAP sites
maps onto and the number of samples within each unit. Given the small numbers of
observations within some of the map units, it might be prudent to sequentially refit
the SOM with reduced grid sizes until the degree of fit drops appreciably.

A supervised SOM can be fitted to the SWAP-138 diatom and lake-water
chemistry data to investigate relationships between chemistry and diatom species
composition. Here we use the square-root transformed species data as the response
data, Y, and the standardised water chemistry data in the predictor role, X. Only
diatom taxa that were present in at least 5 samples at 2% abundance or greater
were included in the analysis. Both maps converged after approximately 60 epochs
(Fig. 9.18a) and achieved similar levels of fit. The codebook vectors for the X map
(chemistry: Fig. 9.18b) are very similar to those produced by the unsupervised SOM
(Fig. 9.17b), indicating the strong influence on diatom species composition exerted
by the water chemistry. In general, the supervised SOM X map is a reflected, about
the vertical, version of the unsupervised SOM; higher ionic strength waters are
found to the right and the more acid sites to the left. The high aluminium, low pH
units are now located to the upper left, with the low pH and low aluminium units to
the lower left.
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Fig. 9.17 Graphical summary of the self-organising map (SOM) fitted to the Surface Waters
Acidification Programme (SWAP) water chemistry data-set: (a) shows how the mean distance
to the closest map unit falls steadily as the SOM is trained and learns the features of the data,
stabilising after 60 iterations or training epochs. The codebook vectors for the trained SOM map
units are shown in (b) where each segment represents one of the nine water chemistry determinands
and the radius of each segment represents the ‘abundance’ of the determinand (large radii indicate
large values and small radii indicate small values). The degree of heterogeneity in the water
chemistry of samples within each map unit is shown in panel (c) with higher values indicating units
with samples of more heterogeneous chemistry. The number of samples in the SWAP training-set
mapped to each unit in the SOM grid is shown in (d); the background shading refers to the number
of samples and each map unit on the panel contains that number of samples (circles) plotted using
a small amount of jitter

Due to the large number of taxa, the codebook vectors for the Y map are best
visualised on a per taxon basis. Figure 9.19 shows the XYF SOM-predicted abun-
dances (back-transformed) for four taxa with differing water chemistry responses.
Achnanthes minutissima is restricted to the high pH, high alkalinity units to the right
of the map. Predicted abundances for Brachysira brebissonii are positive for many
units indicating the wide tolerance of this taxon, however it is most abundant in the
slightly more-acidic units on the map. Tabellaria binalis, an acid-loving species, is
found most abundantly in the very acid, high aluminium map units towards the upper
left of the map, whilst Eunotia incisa, an acid-tolerant species common in nutrient-
poor, acid waters, is most abundant in a range of the low pH units but particularly in
those with lower aluminium concentrations.
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Fig. 9.18 Graphical summary of the X-Y fused Kohonen network self-organising map (XYF-
SOM) fitted to the Surface Waters Acidification Programme (SWAP) diatom training-set. The
square-root transformed diatom data were used as the response map Y with the water chemistry
data used as predictor map X. (a) Shows how the mean distance to the closest unit for both X and
Y maps decreases steadily as the XYF-SOM is trained, apparently converging after 50 iterations.
The codebook vectors for the X map (water chemistry) are shown in (b). See Fig. 9.17 for details
on interpretation
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Fig. 9.19 Predicted percentage abundance for four diatom taxa using a X-Y fused Kohonen
network self-organising map (XYF-SOM) fitted to the Surface Waters Acidification Programme
(SWAP) training-set data
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A supervised SOM can also be used as a multivariate calibration tool; here the
species data play the role of the predictor variables (X map), whilst the variable(s)
of interest to be predicted are now used in the response role (Y map). Here we
build a supervised SOM to predict lake-water pH from the diatom data, using
the same data as for the previous example except in reverse roles. We also only
include pH as the sole Y map variable, although, where appropriate, two or more
response variables may be included in a calibration SOM. The fitted model has an
apparent root mean squared error (RMSE) of 0.215 pH units when assessed using
the training-set data. Further analysis of the fitted codebook vectors of the species
(X map) can be performed, to identify those taxa most influential for predicting
pH and also the species composition of the SOM map unit. We use the fitted XYF
SOM to predict lake-water pH values for the Holocene core from The Round Loch
of Glenhead (Birks and Jones 2012: Chap. 3). Only those taxa used to fit the XYF
SOM were selected from the fossil data. The pH reconstruction is shown in the upper
panel of Fig. 9.20, whilst the pH codebook vector is shown for each map unit in the
lower panel with the fossil samples projected on to the map. Whilst the general form
of the reconstruction is similar to previously published reconstructions (e.g., Birks
et al. 1990) and the recent acidification period is captured by the reconstruction, a
major deficiency in the reconstruction is immediately apparent; the predicted values
for the core samples only take on one of nine possible values. This is due to the
predicted pH for each fossil sample being the fitted pH value from the map unit
onto which each fossil sample is projected. As the fossil samples project onto only
nine map units, only nine possible values can be predicted for the reconstruction.
This deficiency is addressed by Melssen et al. (2007) by combining supervised
SOMs with PLS. Although we will not consider this technique further here, the
general idea is that a BDK SOM is trained on the input data and the similarities
between the objects and the codebook vectors of the trained SOM are computed
to form a similarity matrix. The elements of this matrix are weighted by a kernel
function to form a so-called kernel matrix. The columns of this kernel matrix are
then used as predictor variables in a PLS model to predict the response (Melssen
et al. 2007). In this way, the information contained in the trained SOM is used to
predict the response, but continuous predictions can now be produced because of
the use of PLS. Examples of the use of SOMs in limnology and palaeoecology
include Malmgren and Winter (1999), Céréghino et al. (2001), Holmqvist (2005),
and Weller et al. (2006).

Bayesian Networks

Bayesian networks (also known as belief networks or Bayesian belief networks)
are a powerful modelling technique that describes a means by which reasoning in
the face of uncertainty about a particular outcome can be performed (Witten and
Frank 2005; Bishop 2007; Jensen and Nielsen 2007; Ripley 2008). A Bayesian
network can be viewed as a graphical description of the system under study, where
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Fig. 9.20 Graphical summary of a X-Y fused Kohonen network self-organising map (XYF-SOM)
fitted to the Surface Waters Acidification Programme (SWAP) training-set in calibration mode,
with lake-water pH used as the response data Y and square-root transformed diatom abundance
data used as prediction data X, and applied to a Holocene diatom sequence from The Round Loch
of Glenhead, Scotland, UK. (a) Reconstructed lake-water pH history for the loch. The predicted
pH for each map unit is shown in (b) with The Round Loch of Glenhead sediment core samples
mapped on it

key features of the system are represented by nodes that are linked together in
some fashion so that the cause-and-effect relationships between the nodes are
described. Bayesian networks are more formally known as directed acyclic graphs
(DAGs), where the nodes represent random variables and the linkages between
nodes represent the conditional dependencies between the joined nodes. The graph
is acyclic, meaning that there are no loops or feedbacks in the network structure,
and is directed because the relationships between nodes have stated directions; A
causes B (Ripley 2008).

Consider a simple system with two nodes, A and B, which are the nodes in the
network. A and B are linked by a directional arrow from A to B indicating that A
influences B. In this network, A is the parent of B, and B is the child of A. A has no
parents and thus is also known as a root node, and plays the role of an input variable
in the network. A node that does not have any children is known as a leaf node and
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plays the role of an output variable. Each node in the network is associated with a
set of states, that may be discrete or continuous, which represent the set of possible
conditions that the node may take. A conditional probability table is produced for
each node, which states the probability with which a node will take each of its
states conditional upon the states (or values) of the parent nodes. As such, root
nodes are not initialised with conditional probability tables and instead are provided
unconditional probabilities: the probability that the input variable (root node) is in a
particular state. Conditional independence is a key property of Bayesian networks:
two events X and Y given a third event Z are said to be conditionally independent
if, given knowledge about the state of Z, knowledge of X conveys no information
about the state of Y or vice versa. Independent and interactive (conditional) effects
of variables on the modelled response (output nodes) can be examined. Bayesian
networks also assume the Markov property, namely that the conditional probability
tables can be completed only by considering the immediate parents of a particular
node. If we know the probabilities of the states for the parents of a particular node,
given the conditional probability table for that node, the probabilities for the child
nodes can be computed using Bayes Theorem

P .yjx/ D P .xjy/ P.y/

P.x/
(9.6)

where P(y) is the prior probability of the child node, P(x j y) is the likelihood or the
conditional probability of x given y, P(x) is the probability of the parent node and
is a normalising constant in the equation, and P(y j x) is the posterior probability of
the child node given the state of the parent x. The posterior probability P(y j x) is the
probability of a particular state of the child node conditional upon the probabilities
of the states of the parent. The prior probabilities and the conditional probability
tables for the nodes may be specified using expert judgement and knowledge of the
system under study or learned from the training data via one of several Bayesian
learning algorithms.

Bayesian networks can be operated bottom-up or top-down. Consider again our
system with two nodes, A and B. In bottom-up mode, we might observe a particular
state for B, thus setting the probability for that state to 1, and then propagate this
information back up the network to A to determine the most likely state of A,
given that we have observed the state of B. Conversely, we might be interested in
determining the effect on B of altering the state of A, therefore we set the probability
for one of the A states to 1 and then propagate this information down the network
to see the most likely response of B to the state of A.

As an example, consider a study relating nutrient loadings, through trophic
levels, to provide an estimate of water quality (Castelletti and Soncini-Sessa 2007a).
Nitrogen and phosphorus loadings influence the trophic level of a water body,
stimulating primary production when nutrient levels are elevated, and thus the
trophic level is an influence on the perceived water quality. The network associated
with this hypothetical system/problem is shown in Fig. 9.21. In this simplified
illustration, each of the nodes is characterised by two states; low and high. Table 9.7
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Fig. 9.21 Example of a
Bayesian Network discussed
in the text, showing the
directional relationship of the
effects of nutrient loadings on
trophic level and
consequently upon water
quality. Input/root nodes are
shown in dark grey, whilst
leaf/output nodes are shown
in light grey (Modified from
Castelletti and Soncini-Sessa
2007a)

Table 9.7 Conditional
probability tables for the
Trophic Level (a) and Water
Quality (b) nodes in Fig. 9.21

(a)
Nitrogen loading L H
Phosphorus loading L H L H

Trophic level L 1.0 0.3 0.5 0.0
H 0.0 0.7 0.5 1.0

(b)

Trophic level L H
Water quality L 0.0 0.8

H 1.0 0.2

L Low, H High

shows the conditional probability tables for the trophic level and water quality nodes
for this illustrative example. If the prior beliefs of the states for the phosphorus
and nitrogen loading nodes are set to the values shown in the left-hand section of
Table 9.8, the posterior probabilities computed using the conditional probability
tables (Table 9.7) of the trophic level and water quality states would be those shown
in the right-hand section of Table 9.8. If our prior beliefs about the probabilities
of the nutrient-loading states were to change or be updated, then the conditional
probabilities of the states for trophic levels and water quality would likewise be
updated in light of the new prior beliefs.

Bayesian networks can be used to inform the decision-making process via the
inclusion of a decision node into the network (Korb and Nicholson 2004; Bishop
2007). Returning to our simple two-node network example (A and B), we could
turn this network into a Bayesian decision network (BDN) by assigning a decision
parent node to A. This decision node might also be associated with a cost function
describing the cost of enacting the decision. The decision node describes the states
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Table 9.8 Prior beliefs for the states of nitrogen and phosphorus loading, which when combined
with the conditional probability tables in Table 9.7, yield the posterior probabilities for the states
of trophic level and water quality. Arrows show the directional relationships of the effects of the
nutrient loadings on trophic level and hence water quality (see Fig. 9.21)

Nitrogen loading Phosphorus loading Trophic level Water quality

L 0.1 0.3 ! 0.1 ! 0.7
H 0.9 0.7 0.9 0.3

L Low, H High

of possible management actions, for example restoration strategies or water-quality
limits or standards, whilst the cost function describes the cost of enacting a particular
restoration strategy or setting a particular water-quality standard. The output node
in our example, B, is linked to a utility node, which describes the desirability
(utility) of particular states of the outcome node. Node A now needs to be assigned
a conditional probability table to describe the probabilities of the states of A
conditional upon the different states of the decision node. The utility output from the
network is the sum of the individual utilities of the output state in node B, weighted
by the probabilities of each of the output states. Management decisions can then be
based on selecting the intervention that maximises the output utility of the network
relative to the cost of intervention. As with the simpler Bayesian networks, the prior
and conditional probabilities of the BDN nodes can be set a priori using expert
judgement or learned from available training data or a combination of the above;
probabilities for decision nodes and utility values for outcome states are set by the
user.

Bayesian networks have seen little use in palaeoecology, but have had some
limited use in conservation management in freshwater ecology. Stewart-Koster et al.
(2010), for example, use Bayesian networks to investigate the cost effectiveness of
flow and catchment restoration for impacted river ecosystem, the output of which
would be used to guide investments in different types of restoration. Other examples
include the use of Bayesian networks in water-resource management (Castelletti and
Soncini-Sessa 2007b; Allan et al. 2011), the evaluation of management alternatives
on fish and wildlife population viability (Marcot et al. 2001), and the effects of
land-management practices on salmonids in the Columbia River basin (Rieman
et al. 2001), whilst Newton et al. (2006, 2007), Aalders (2008), Kragt et al. (2009),
Murphy et al. (2010), and Ticehurst et al. (2011) employ Bayesian networks in
vegetation conservation and management. Pourret et al. (2008) present a wide range
of case studies from many disciplines that have found Bayesian networks useful.

Genetic Algorithms

Genetic algorithms are one of a number of stochastic optimisation tools that fall
under the heading of evolutionary computing. Numerical optimisation is a general
catch-all term for algorithms that given a cost (or loss) function aim to find a globally
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optimal solution to a modelling problem, for example a set of model coefficients
that minimises the lack of fit of a model to a set of training samples. Numerical
optimisation techniques that use derivatives of the loss function proceed towards an
optimal solution in an iterative fashion but which may not, however, converge to a
globally optimal solution, instead they find a locally optimal solution. This is akin
to always walking downhill to find the lowest point in a landscape; eventually you
will not be able to proceed further because to do so would involve moving uphill. A
much lower valley just over a small rise from the one you are currently in would be
out of reach if you could only walk downhill. Evolutionary computing introduces
ideas from natural selection and evolution to add elements of stochasticity to the
optimisation search in an attempt to avoid becoming trapped in sub-optimal local
solutions.

Of the various evolutionary computing techniques, genetic algorithms have been
most frequently used in ecology, especially the Genetic Algorithm for Rule-set
Prediction (GARP) procedure, which has seen extensive use in modelling spatial
distributions of species (Anderson et al. 2003; Jeschke and Strayer 2008; Franklin
2010). Here we describe genetic algorithms in a general sense, and then we briefly
discuss genetic programmes and GARP.

Genetic algorithms consider a population of solutions to a modelling problem
rather than a single solution (D’heygere et al. 2003). Each of the solutions is
described by a string of numbers, each number representing a gene and the set
of numbers an individual chromosome in the terminology of genetic algorithms.
The strings represent terms in the model. If we consider a simple least-squares
regression, then we could use a string of length m zeroes and ones indicating which
of the m predictor variables is in the model (Wehrens 2011). Alternatively, we could
just record the index of the variables included in the model, where the string of
values would be of length M (the number of variables in the model, its complexity)
and the individual values in the string would be in the set (1, 2, : : : , m) (Wehrens
2011). The size of the population of chromosomes (the number of solutions)
considered by the genetic algorithm needs to be set by the user; with too small a
population the algorithm will take a long time to reach a solution, whilst too large
a population entails fitting many models to evaluate each of the chromosomes in
every generation. The initial population of chromosomes is generally seeded by
assigning a small random selection of the available predictor variables to each of
the C chromosomes.

Offspring solutions (chromosomes) are produced via a sexual reproduction
procedure whereby genes from two parent solutions are mixed. The fitness of the
offspring determines which of them persist to produce offspring of their own, with
fitness being defined using a loss function, such as least-squares error. Offspring
with low fitness have a low probability of reproducing, whilst the fittest offspring
have the highest chance of reproducing. This process of sexual selection is repeated
a large number of times with the result that subsequent generations will tend to
consist of better solutions to the modelling problem. The sexual reproduction step
consists of two random processes termed crossover or sharing of parents’ genes, and
mutation. These processes are random and as such are not influenced by the fitness
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of individual parents. Sexual reproduction mixes the genes from two parents in a
random fashion to produce an offspring that contains a combination of the genes
from the two parents. Mutation introduces a stochastic component to the genetic
algorithm, and allows predictor variables not selected in the initialisation of the
population of chromosomes a chance to enter the genetic code of the population.
Mutation is a low-probability event; say 0.01 indicating that one time in a hundred
a mutation will take place during reproduction. Mutations can involve the addition
of a new variable to the chromosome, the removal of an existing variable, or both
addition and removal of variables. Mutation allows the genetic diversity of the
population to be maintained.

Each iteration of a genetic algorithm produces a new generation of offspring by
sexual reproduction of the fittest members of the current population. The candidates
for reproduction are chosen at random from those models that reach a minimum
fitness threshold. The selection of two candidates for reproduction may be done at
random from within this set of fittest chromosomes or at random with the probability
of selection weighted by the fitness of each chromosome. The latter gives greater
weight to the best of the best solutions in the current population.

The genetic algorithm is run for a large number of iterations (generations) and
the fittest solution at the end of the evolutionary sequence is taken as the solution to
the modelling problem. It is possible that the population of solutions will converge
to the same, identical solution before the stated number of generations has been
produced. Likewise, there is no guarantee of convergence to the best solution in the
stated number of iterations. As such, it is important that the evolutionary process is
monitored during iteration, say by recording the fitness of the best solution and the
median fitness over the population of solutions for each generation (Wehrens 2011).
If the fitness of the best solution is still rising and not reached an asymptote by the
end of the generations then it is unlikely that the algorithm has converged.

Genetic algorithms are a general purpose optimisation tool, and as such they
require far more user interaction than many of the other statistical machine-learning
methods described in this chapter. The size of the population of solutions, the
minimum and maximum number of variables included in a single solution, the
number of iterations or generations to evolve, the mutation rate, the fitness threshold
required to select candidates for sexual reproduction, and the loss function all need
to be specified by the user. The flexibility of the genetic algorithm thus comes
with a price. However, the algorithm can be applied to a wide range of problems,
simply by introducing a new loss function that is most appropriate to the modelling
problem to hand. The loss function can be any statistical modelling function, such
as least-squares, linear discriminants, principal components regression, or partial
least squares, for example, and as such a wide range of problems can be tackled.
Genetic algorithms can also be slow to converge to an optimal solution, especially
when faced with a complex modelling problem consisting of many observations and
predictor variables.

Genetic programmes are related to genetic algorithms, but now each chromo-
some in the population is a computer program that uses combinations of simple
arithmetic rules (using C, �, �, etc.) and mathematical functions or operators. The
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various rules and functions are combined into a syntax tree to combine numeric
values with mathematical operators and functions that form a solution to a problem.
Reproduction now takes the form of randomly swapping sub-trees in the syntax
trees of two parents to produce new offspring that include aspects of both parents’
genetic programme. Mutation is performed by randomly selecting a sub-tree in the
syntax tree of an individual and replacing that sub-tree with a randomly generated
sub-tree. Which programmes are allowed to reproduce is controlled by a fitness
criterion in the same way as described for genetic algorithms. The key difference
between a genetic algorithm and a genetic programme is that genetic algorithms
optimise an a priori specified model by evolving solutions to the modelling problem
(regression coefficients for example) that give the best fit of the model to the training
data, whereas genetic programmes aim to find an optimal solution to an unspecified
modelling problem by combining simple mathematical steps to best fit or explain
the training data.

GARP (Stockwell and Noble 1992; Stockwell and Peters 1999) is a genetic
algorithm where the genes do not represent inclusion or exclusion of particular
predictor variables, but instead are simple rules that are very much akin to the
rules produced by the tree models we described earlier. In GARP, each of the rules
follows a similar form: if ‘something’ is true, then ‘this’ follows, where ‘something’
is a simple rule and ‘this’ is a predicted value say. For example, a rule might be
if pH is less than Y and aluminium is greater than X, then the abundance of the
diatom Tabellaria binalis is Z%. The set of possible rules using combinations of
predictor variables is impossibly large for most problems for an exhaustive search
to be made. Instead, genetic algorithms are used to evolve the rules into a set
of optimal combinations that best predict the response. The algorithm starts by
identifying all rules consisting of a single predictor; at this point, the algorithm
is very much similar to the exhaustive search used in tree models to identify the
first split. A predefined number, r, of these rules is then chosen as the initial set of
rules upon which the genetic algorithm will operate. The r best rules are chosen
as the initial set. Each of several predefined operators is then applied to the initial
set of rules to evolve a new generation of rules. These operators include a random
operator which creates a rule with a random number of conditions (if ‘something’s)
and values (then ‘this’s), a mutation operation which randomly changes the values
used in a condition, and a concatenation operation which combines two randomly
chosen rules from the existing set. Having applied these operators to the current set
of rules, the rules are ordered in terms of fitness, and the least fit rules are discarded.
The remaining set of rules then undergo another round of operator application to
evolve a new generation of rules and the least fit rules again are discarded. This
process is repeated a large number of times in order to evolve a set of rules that
best predicts the response. GARP is most useful in situations where the user has
little reliable background knowledge to guide model choice and in situations where
rules are sought in noisy, high dimensional, discontinuous data with many local
optima. However, GARP is considered computer intensive relative to the many of
the statistical machine-learning tools described here.
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Genetic algorithms and programmes and GARP are very flexible, general
optimisation tools. However, they are not well suited to all problems. More-
specific statistical machine-learning tools, such as regression or classification trees
and related methods will tend to perform as well or better than the evolutionary
computing approaches for general regression or classification problems (D’heygere
et al. 2003; Olden et al. 2008), and as we have seen, bagging, random forests, and
boosting can all improve upon single tree models by combining information from
several weak learners. In addition, Elith et al. (2006) and Lawler et al. (2006) both
observed that GARP tended to over-fit species distributions compared with other
modelling techniques. As such, and given the availability of powerful alternative
techniques plus the additional effort required by the user to use evolutionary
computing techniques, we cannot recommend their use over the other statistical
machine-learning techniques described earlier. GARP is, however, widely used in
species-climate modelling in biogeography and climate-change predictive biology
(e.g., Elith and Burgman 2002; Stockwell and Peterson 2002; Pearson et al. 2006;
Tsaor et al. 2007; Jeshcke and Strayer 2008).

Principal Curves and Surfaces

Principal component analysis (PCA) (Jolliffe 2002; Legendre and Birks 2012b:
Chap. 8) is used in a large number of fields as a means of dimension reduction by
expressing on the first few principal components orthogonal linear combinations of
the input data that explain the data best in a statistical sense. These first few principal
component axes are often used as synthesisers of the patterns of change found in
stratigraphical data for example (Birks 2012b: Chap. 11). PCA is also the basis
of the linear, multivariate calibration technique principal components regression
(Juggins and Birks 2012: Chap. 14), where the input data are reduced to p � m
components, which are then used in a multiple regression to predict the known
response variable. In the high-dimensional space of the input data, the principal
components represent lines, planes, or manifolds (where manifold is the generic
term for these surfaces in m dimensions). These principal components are inherently
linear, and where data do not follow linear patterns, PCA may be sub-optimal at
capturing this non-linear variation. This is why correspondence analysis, principal
coordinates, and non-metric multidimensional scaling (Legendre and Birks 2012b:
Chap. 8) are popular in ecology where the input data are assumed to be inherently
non-linear.

SOMs can be viewed as a non-linear two-dimensional manifold, one that is best
fitted to the data in m dimensions. One of the options for choosing the starting points
of a SOM grid is to select points on the two-dimensional principal component plane,
which are then bent towards the data to improve the quality of fit. A number of other
techniques have been developed in the last 20 years or so that generalise the problem
of fitting non-linear manifolds in high dimensions. Here we discuss one particular
technique – that of principal curves and surfaces.
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Fig. 9.22 Fitted relationship between x and y (solid black line) and the minimised errors (grey
line segments) for least-squares regression (a), principal component analysis (b), cubic smoothing
spline (c), and a principal curve (d). Where relevant, y is treated as the response variable and x as
the predictor variable

Principal curves (PCs: Hastie and Stuetzle 1989) are a generalisation of the first
principal component line, being a smooth, one-dimensional curve fitted through the
input data in m dimensions such that the curve fits the data best, i.e., the distances
of the samples to the PC are in some sense minimised (Hastie et al. 2011). In least-
squares regression, the model lack-of-fit is computed as the sum of squared distances
between the fitted values and the observations for the response variable. These errors
are shown as vertical lines in Fig. 9.22a for the function

y D �0:9x C 2x2 C �1:4x3 C " " � N .� D 0; � D 0:05/ (9.7)
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In PCA, the first principal component is fitted such that it minimises the lack-
of-fit in terms of both the ‘response’ variable and the ‘predictor’ variable. These
errors are shown in Fig. 9.22b for the function in Eq. 9.7 and are the orthogonal
distances of the observations to the principal component line. We can generalise the
simple least-squares regression to a smooth function of the covariates (D variables)
using smoothing splines (or, for example, in a generalised additive model; Birks
2012a: Chap. 2). A smoothing spline fit to the data generated from Eq. 9.7 is shown
in Fig. 9.22c. As with the least-squares regression, the lack-of-fit is measured in
terms of the sum of squared distances in the response between the fitted values
and the observations. Principal curves generalise the first principal component line
by combining the orthogonal errors aspect of PCA with the concept of a smooth
function of the covariates. A PC fitted to the data generated from Eq. 9.7 is shown in
Fig. 9.22d with the errors shown as orthogonal distances between the observations
and the points on the PC onto which they project. The degree of smoothness of
the fitted PC is constrained by a penalty term, just as with smoothing splines
(Birks 2012a: Chap. 2), and the optimal degree of smoothing is identified using
a generalised cross-validation (GCV) procedure. The point on the PC to which an
observation projects is the point on the curve that is closest to the observation in m
dimensions.

Principal curves are fitted to data using a two-stage iterative algorithm. Initially, a
starting point for each observation is determined, usually from the sample scores on
the first principal component or correspondence analysis axis. These starting points
define a smooth curve in the data. The first stage of the algorithm then proceeds
by projecting each point in m dimensions onto a point on the initial curve to which
they are closest. The distances of the projection points along the curve from one
arbitrarily selected end are determined. This is known as the projection step. In the
second stage of the algorithm, the local averaging step, the curve is bent towards
the data such that the sum of orthogonal distances between the projection points
and the observed data are reduced. This local averaging is achieved by fitting a
smoothing spline to each species’ abundance using distance along the curve as the
single predictor variable. The fitted values of these individual smoothing splines
combine to describe a new smooth curve that more closely fits the data. At this
point, a self-consistency check is performed such that if the new curve is sufficiently
close to the previous curve, convergence is declared to have been reached and the
algorithm terminates. If the new curve is not sufficiently similar to the previous
curve, the projection and local averaging steps are iterated until convergence, each
time bending the curve closer to the data.

The algorithm used to fit a PC is remarkably simple, yet several choices need
to be made by the user that can affect the quality of the fitted curve and ultimately
the interpretation of the fitted curve. The first choice is the selection of suitable
starting points for the algorithm. A logical starting point is the first principal
component line, however De’ath (1999) found that better results were achieved
using the first correspondence analysis (CA) axis. The second choice involves the
fitting of smooth functions to the individual species during the local averaging step.
Above we used the general term smoothing splines to describe the functions used.
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Here we use a cubic smoothing spline (Birks 2012a: Chap. 2) for the example, but
LOESS or kernel smoothers may also be used, as could generalised additive models
(GAMs). GAMs (Birks 2012a: Chap. 2) are particularly useful when the individual
species responses are not thought to be normally distributed; for example, for count
abundances, a Poisson GAM may provide a better fit to each species. Whichever
type of smoother is used, it is effectively a plug-in component used by the algorithm
to perform the local averaging.

Having chosen a type of smoother, the degree of smoothness for the fitted
PC needs to be determined. De’ath (1999) suggests that an initial smoother is
fitted to each species in the data using GCV to determine, separately for each
species, the degree of smoothness required for each curve. The median degree of
smoothness (span or degrees of freedom) over the set of fitted smoothers is then
chosen for the degree of smoothness used to fit the PC. Alternatively, the complexity
of the individual smoothers fitted during the local averaging step can be allowed
to vary between the different species, with GCV used to select an appropriate
degree of smoothness for each species during each of the averaging steps (GL
Simpson unpublished). This allows the individual smoothers to adapt to the varying
degrees of response along the PC exhibited by each species; some species will
respond linearly along the curve whilst others will show unimodal or skew-unimodal
responses, and it seems overly restrictive to impose the same degree of smoothing
to each species in such situations.

It is essential that the algorithm is monitored during fitting and that the resulting
PC is explored to identify lack-of-fit. Choosing good starting locations can help
with over-fitting, but overly complex, over-fitted PCs are most easily identified via
examination of the final smoothers for each species, which tend to show complex
fitted responses along the curve. The PC can be visualised by projecting it into a
PCA of the input data. De’ath (1999) contains further advice on fitting, evaluating,
and interpreting PCs.

One use of PCs is in summarising patterns of species compositional change in
a stratigraphical sequence. PCA, CA, and DCA axes one and two scores are often
used in palaeoecological studies to illustrate where the major changes in species
composition occur (Birks 2012b: Chap. 11). Given the additional flexibility of a PC,
it is likely to explain similar, or even greater, amounts of temporal compositional
change in a single variable (distance along the PC) than that explained by two or
more ordination axes. We illustrate the use of PCs in this setting by describing
temporal compositional change in a sequence of pollen counts from Abernethy
Forest for the period 12,150–5515 radiocarbon years BP (Birks and Mathewes
1978).

As the starting curve we used sample scores on the first CA axis, and fitted
the PC to the data using cubic smoothing splines allowing the complexity of the
individual smoothers used in the local averaging step to vary between pollen taxa,
using GCV to choose the optimal degree of smoothing for each taxon. A penalty
term of 1.4 was used to increase the cost of degrees of freedom in the GCV
calculations. The PC converged after six iterations and is shown in Fig. 9.23, as
projected onto a PCA of the pollen data. The configuration of the samples in PCA
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Fig. 9.23 Principal component analysis (PCA) plot of the Abernethy Forest late-glacial and early-
Holocene pollen data with the fitted principal curve superimposed (thick line). The thin, grey lines
join each observation with the point on the principal curve on to which they project, and are the
distances minimised during fitting. PC principal component

space shows a marked horseshoe-like shape that is commonly encountered when a
single, dominant gradient is projected onto 2 dimensions. The fitted PC is shown
by the thick curved line in Fig. 9.21 with the orthogonal errors represented by
thin segments drawn between the sample points and the curve. The PC explains
95.8% of the variation in the Abernethy Forest pollen sequence, compared with
46.5% and 30.9% for the first principal component axis and the first correspondence
analysis axis, respectively. The PC accounts for substantially more of the variation
in species composition than two PCA or CA axes (80.2% and 52.3%, respectively),
which might conventionally be used. Figure 9.24a shows the distance along the
PC between adjacent samples in the sequence expressed as a rate of change per
1000 years, clearly illustrating four periods of substantial compositional change
in the pollen taxa. The actual distances along the PC are shown in Fig. 9.22b,
alongside similar measures for the first PCA and CA axis scores. The total gradient
described by each method has been normalised to the range (0,1) to allow a direct
comparison between the three methods. Although the changes in PCA and CA axis
1 scores appear more marked, exhibiting apparently greater variation during periods
of change, the PC adequately captures these periods of change but also places them
within the context of overall compositional change as �96% of the variation in the
pollen taxa is described by the PC.
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Fig. 9.24 (left) Distance along the principal curve expressed as a rate of change per kyr between
samples for the Abernethy Forest pollen data-set. Several periods of rapid compositional change
are detected. (right) Distance along the gradient expressed as a proportion of the total gradient
for the fitted principal curve and the first ordination axes respectively of a principal component
analysis (PCA) and a correspondence analysis (CA) fitted to the Abernethy Forest data

Figure 9.25 shows cubic smoothing splines fitted to the nine most abundant
pollen taxa in the Abernethy Forest sequence. Each smoothing spline models
the proportional abundance of the taxon as a function of the distance along the
PC (expressed in temporal units). The degrees of freedom associated with each
smoothing spline was taken from the smoother fitted to each taxon during the final
local averaging step at convergence. As expected, given the amount of variation
explained, the PC clearly captures the dynamics present in the pollen data and
further illustrates that the data represent a single gradient of successive temporal
change in pollen composition.
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Fig. 9.25 Fitted response curves for the nine most abundant pollen taxa in the Abernethy Forest
data as estimated using a principal curve. Open circles are the observed proportional abundance
and the solid line is the optimised smoother from the final iteration of the principal curve. The
distance along the principal curve is expressed here in radiocarbon years BP

When combined with the rate-of-change along the curve, the PC approach is
far better at describing compositional change than either PCA or CA. This is
particularly apparent when the stratigraphical data are best described by a single
dominant, though not necessarily long, gradient. The PC degrades to the first
principal component solution when all taxa are described by 1 degree-of-freedom
linear functions; as a result the method can perform no worse than PCA and can, in
the right circumstances, perform substantially better.

Principal curves can be generalised to principal surfaces, analogous to a plane
described by the first two principal components. The algorithm described above is
adapted in this case to use two-dimensional smoothers for the individual species and
the projection points on the curve now become projection points on the principal
surface. Higher dimensional principal surfaces can, in theory, be fitted but their
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use is infrequent owing not least to problems in visualising such curves and in
performing the smoothing in multiple dimensions. An unsupervised SOM is very
similar to a two-dimensional principal surface, although motivated from a very
different view point. Both principal surfaces and SOMs fit a manifold that is
progressively warped towards the response data in order to achieve a closer fit to
the data points. Geological examples of PCs include Banfield and Raftery (1992)
and medical examples include Jacob et al. (1997).

Shrinkage Methods and Variable Selection

A fundamental problem in the statistical analysis of a data-set is in finding a minimal
set of model terms or parameters that fit the data well (Murtaugh 2009; Birks 2012a:
Chap. 2). By removing terms or parameters from the model that do not improve the
fit of the model to the data we aim to produce a more easily interpretable model that
is not over-fitted to the training data. The assumption that there is a single ‘best’
model is, in general, wrong. A more likely situation is that there will be a number
of candidate models that all do a similar job in terms of explaining the training
data without being over-fitted to them. Without further external criteria it may be
wrong to assume that the ‘best’ of the candidate models is the one that describes
the relationship between predictors and response for the population from which the
sample of data used to fit the model was collected.

The information theoretic approach advocated by a number of authors (Burnham
and Anderson 2002; Whittingham et al. 2006) proceeds by ranking candidate
models in terms of the Akaike Information Criterion (AIC) and combining the terms
in the various models by averaging over the set of models, and weighting each model
in proportion to a likelihood function that describes the probability that each model
is the best model in terms of AIC if the training data were collected again under the
same circumstances (Whittingham et al. 2006). Often, AIC is used to select between
nested models and the model averaging step skipped, to identify the ‘best’ model.
In such cases, selection via AIC (or Bayesian Information Criterion (BIC), etc.)
suffers from the same problems as forward-selection or backward-elimination and
step-wise selection procedures, in particular, selection bias in the estimates of the
model parameters. Anderson (2008) provides a gentle introduction to model-based
inference.

Forward-selection and backward-elimination techniques are routinely used in
ecology and palaeolimnology to prune models of unimportant terms. Starting
from a model containing only an intercept term, forward selection proceeds by
adding to the model that predictor variable that affords the largest reduction in
model residual sum-of-squares (RSS). The procedure continues by identifying the
predictor that provides the largest reduction in RSS conditional upon the previously
selected terms included in the model. When the reduction in RSS afforded by
inclusion of an additional predictor in the model is insignificant (usually assessed
using an F-ratio test between models including and excluding the predictor, or an
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information statistic such as AIC), selection stops. Backward elimination operates
in a similar manner, except in reverse, starting with a model containing all the
available predictor variables. The predictor whose removal from the current model
would result in the smallest increase in RSS is eliminated from the model if doing
so does not result in a significantly worse model. Backward elimination proceeds
until either all predictors are removed from the model or no terms can be removed
from the model without significantly affecting the fit to the response. An important
difference is that forward selection can be performed on a model fitted to any data-
set consisting of two or more predictors, whereas backward selection can only be
performed on data-sets where there are n � 1 predictors.

Step-wise selection combines both forward selection and backward elimination;
at each step in the selection procedure, all single-term additions or deletions are
considered and the change that results in the most parsimonious model is made
subject to the condition that the added term significantly improves, or the deleted
term does not significantly harm, the model fit. An alternative approach to step-wise
selection is best-subsets selection, in which models using all possible combinations
of predictor variables are generated and the best model of a given size, or the
best model over all subsets, is selected from the set of models. The feasibility of
this exhaustive search depends on the number of available predictor variables and
becomes computationally difficult when only a modest number are available. The
branch and bound algorithm (Miller 2002), however, allows an exhaustive search to
be performed in a feasible amount of time.

There are several problems with the sequential selection and best-subsets
methods, most notably (i) selection bias in the estimates of the model parameters,
(ii) increased variability of the selected model, and (iii) bias in the standard errors
of model parameters and its effect on the interpretation of p-values. Selection bias
arises because the selection techniques described above amount to the imposition of
a hard threshold on the size of the model coefficients; the estimate for a coefficient
is either zero when the term is not included in the model, or some value O“i when
included in the model. An extreme example, adapted from Whittingham et al.
(2006), is shown in Fig. 9.26, where 5000 data-sets of size 10 were drawn from
the model

yi D 1 C 0:8xi C ©i (9.8)

where xi are the values f1, 2, : : : , 10g and ©i are model errors consisting of inde-
pendent Gaussian random variables with mean 0 and ¢ i equal to 1. The subscripts
i index the 10 observations in each data-set. In the above model, the coefficient is
known (“ D 0.8). Given values for xi and yi, we can fit a linear regression to estimate
“ for each of the 5000 data-sets. The distribution of the estimates for “ is shown
in the upper panel of Fig. 9.26 with the known value superimposed. If we set the
estimates of “ to zero for models where the estimate is not statistically different
from 0 at the ’ D 0.95 level (i.e., with a p-value >0.05) and retain those estimates
that are statistically significant (i.e., those with a p-value �0.05), a process which
amounts to selecting whether to include the term in the model or not, we observe
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Fig. 9.26 An illustration of selection bias of regression coefficients. The upper panel shows the
distribution of estimates of a single regression coefficient from models fitted to random samples
from a model with known coefficient “ D 0.8. The estimates from 5000 random draws are centred
about the known value of “. If we retain the estimates of “ from the 5000 random draws that are
significant at the ’ D 0.95 (95%) level and set the insignificant coefficients to 0, equivalent to a
hard selection threshold, we observe the distribution shown in the lower panel, which contains
coefficient estimates that are very different from the known value of “

the distribution of the estimates of “ for the 5000 models shown in the lower panel
of Fig. 9.26. Note that the retained values are all substantially different from the
known population value of “; they are biased low when the term is not selected or
biased high when the term is retained. No such bias occurs in the set of unselected
parameter estimates (Fig. 9.26); it is the act of selection that introduces the bias
and arises because the term is either included in the model or not. This bias occurs
whether terms are selected using p-values or via some other statistic, such as AIC.

Models resulting from forward selection and/or backward elimination are prone
to increased variance, and hence, ultimately higher model error (Mundry and Nunn
2009). The argument behind this statement is the same as that used to explain the
instability of single tree-based models (see above). Small changes in the sample
data may lead to a different variable entering the model in the early stages of
selection, especially if there are two or more predictors that have similar predictive
ability as in the case of collinear predictors. The resultant model may be over-fitted
to the training sample and generalise poorly when making predictions for other
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observations from the population. Such models are said to have high variability;
the uncertainty in the predicted values is large.

An often overlooked issue with model selection is that the standard errors of
the estimated coefficients in a selected model are biased and too small, suggesting
apparent precision in their estimation; their construction knows nothing of the
previous, often convoluted, selection process that led to the selected model.
Consequently, test statistics and their p-values are too optimistic and the possibility
of making a Type I error is increased. It is not clear how this bias can be corrected for
in a practical sense (Hastie et al. 2011). This problem affects best-subsets selection
as well as forward selection/backward elimination.

Model selection often results in models that contain too many parameters unless
steps are taking during selection to manage the entry of variables to the model.
Consider the situation where a p-value threshold of 0.05 is used to decide whether
to include a variable in a model at each stage of a forward-selection procedure. Each
of the tests performed to decide whether to include the predictor or not is subject to a
Type I error-rate of 0.05, and as such the final model has a much larger Type I error-
rate. A correction to the p-value used in each test may be made, to guard against this
inflated Type I error-rate. For example, a Bonferroni-type correction can be made of
p/t, where p is the user-selected p-value threshold (0.05 in the above discussion) and
t is the number of tests conducted thus far. In deciding whether to include the first
predictor variable, using 0.05 as the threshold for inclusion, the variable is included
if it achieves a p-value of 0.05/1 D 0.05 or lower. For the second variable to enter
the model it must achieve a p-value of 0.05/2 D 0.025 or lower to be selected, and
so on for the subsequent rounds of selection. Using BIC instead of AIC to decide on
inclusion or elimination penalises more-complex models to a stronger degree and
thus may help to guard against selecting overly complex models.

Correlated predictors, as well as making model selection more difficult, cause
additional problems in estimating model coefficients; they are poorly determined
and have high variance (large standard errors). Consider two correlated predictors; a
large positive value as the estimate for the model coefficient for one of the predictors
can be counteracted by a large negative coefficient for the other predictor (Hastie
et al. 2011). If the interest in fitting the model is to interpret the coefficients to
shed light on ecological or environmental mechanisms, spurious inflation of effects
due to multicollinearity, if undetected, may lead to erroneous statements about the
mechanisms under study.

There are a number of approaches that can be applied to help with model
selection and collinearity problems. These approaches are known as shrinkage
methods. Two shrinkage techniques familiar to palaeolimnologists are principal
components regression (PCR) and partial least squares (PLS) (Martens and Næes
1989; Birks 1995; Næs et al. 2002; Juggins and Birks 2012: Chap. 14). In both
approaches, the aim is to identify a small number of orthogonal (uncorrelated)
components that explain maximal amounts of variance in the predictors (PCR) or
maximal amounts of the covariance between the response and predictors (PLS).
Predictors that exhibit low variance (PCR) or are unrelated to the response (PLS)
will have low weights in the components retained for modelling; in a sense, the
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coefficients for these variables have been shrunk from their least-squares estimates
(Hastie et al. 2011). PCR and PLS are also useful simplification techniques in
situations where there are many more predictor variables than observations, as in
chemometrics (Wehrens 2011). However, these techniques suffer in terms of model
interpretation; the regression coefficients no longer apply to individual predictors
but to linear combinations of the predictors. If the aim of modelling is prediction,
and not explanation, then the aim of selecting a minimal adequate model is to
achieve lower prediction error, and PCR or PLS are useful techniques.

PCR and PLS impose a size constraint on the coefficients of predictors in the
model by retaining a small number of orthogonal components as predictors in the
model. Information on those variables that are useful in predicting the response or
have high variance is retained, whilst those variables unrelated to the response or
have low variance are discarded – their coefficients are effectively, or close to, 0
(Hastie et al. 2011). A number of other techniques have been proposed that also
impose size restrictions on model coefficients, namely ridge regression (Hoerl and
Kennard 1970; Copas 1983, Hastie et al. 2011), the lasso (Tibshirani 1996; Hastie
et al. 2011), and a technique known as the elastic net which combines ridge-like and
lasso-like constraints (Zou and Hastie 2005; Hastie et al. 2011).

Ridge regression was proposed as a means to handle collinearity in the set
of available predictors. Earlier we saw that two correlated variables may have
large coefficients but of opposite sign. Imposing a constraint on the size of the model
coefficients helps to alleviate this problem. Ridge regression imposes a quadratic
constraint on the size of the coefficients, but can also be seen to shrink components
of the predictors that have low variance, in other words, that explain low amounts of
the variance in the set of predictors available (Hastie et al. 2011). Ridge regression
coefficients ˇridge are chosen to minimise a penalised RSS criterion.

ˇridge D arg min
ˇ
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The first term in the braces is the RSS and the second term is the quadratic penalty
imposed on the ridge coefficients. Equivalently, in ridge regression, the estimated

coefficients minimise the RSS subject to the constraint that
pP

j D1

ˇ2
j � twhere t is

a threshold limiting the size of the coefficients. There is a one-to-one relationship
between œ and t; as œ is increased, indicating greater penalty, t is reduced, indicating
a lower threshold on the size of the coefficients (Hastie et al. 2011). Software used to
fit ridge regression solves the penalised RSS criterion for a range of values of either
œ or t and cross-validation is used to identify the value of œ or t that has the lowest
prediction error. Note that the model intercept (ˇ0) is not included in the penalty
and that the predictor variables are standardised to zero mean and unit variance
before estimation of the ridge coefficients. Where œ D 0, the ridge coefficients are
equivalent to the usual least-squares estimates of the model coefficients.
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It is important to note that ridge regression does not perform variable selection;
all available predictor variables remain in the model, it is just their coefficients
that are shrunk away from the least-squares estimates. The lasso (Tibshirani 1996)
is related to ridge regression but can also perform variable selection because it
employs a different penalty on the coefficients to that of the ridge penalty. The lasso
(least absolute shrinkage and selection operator) imposes a restriction on the size of
the absolute values of the coefficients instead of a restriction on the squared values
of the coefficients used in ridge regression. The lasso finds coefficients ˇlasso that
minimise the following penalised RSS criterion

ˇlasso D arg min
ˇ
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which is equivalent to minimising the RSS subject to the constraint that
pP

j D1

jˇj j � t

(Hastie et al. 2011). This penalty allows variables whose coefficients are shrunk
to zero to be removed from the model. As before, cross-validation is used to
identify the value of œ or t with the lowest prediction error. It can be shown that
ridge regression shrinks all coefficients proportionally, and the lasso shrinks each
coefficient by a constant factor œ and truncates at zero (e.g., a positive coefficient
that would otherwise go negative when shrunk by the factor œ is removed from
the model). The lasso is a general technique and has been successfully applied to
generalised linear models (Tibshirani 1996) and is used as a form of shrinkage
in boosted trees (De’ath 2007). A fast computer algorithm, least angle regression
(LARS) was developed by Efron et al. (2004) that can compute the entire lasso
path from no predictors in the model to the full least-squares solution for the
same computational cost as the least-squares solution. Park and Hastie (2007) have
developed similar path algorithms for the lasso in a GLM setting.

Ridge regression shrinks the coefficients of correlated predictors and the lasso
selects predictors via shrinkage. Ideally, these two characteristics would be com-
bined into a single technique that handles correlated predictors and could perform
model selection. This is exactly what the elastic-net penalty does, via a weighted
combination of ridge-like and lasso-like penalties to form the elastic-net penalty

�
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where ’ controls the relative weighting of ridge-like and lasso-like penalties (Zou
and Hastie 2005). Where there are correlated predictors, the elastic net will tend to
shrink the coefficients for those predictors rather than necessarily dropping one of
the predictors giving full weight in the model to the other predictor, which is how
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the lasso operates with collinear variables. Friedman et al. (2010) demonstrate an
efficient path algorithm for fitting the elastic net regularisation path for GLMs.

Figure 9.27 shows ridge regression (Fig. 9.27a), lasso (Fig. 9.27b), and elastic
net (Fig. 9.27c) regularisation paths for the ozone data considered in the MARS
example earlier. The models were fitted to the log-transformed ozone concentration
because gamma GLMs are not supported in the glmnet R package (version 1.6:
Friedman et al. 2010) used here. We consider only the main effects of the nine
predictor variables, and for the elastic net we use ’ D 0.5, indicating equal amounts
of ridge-like and lasso-like penalties. The left-hand panels of each figure show the
regularisation path with the full least-squares solutions on the right of these plots; the
y-axis represents the values of the coefficients for each predictor, whilst the lines on
the plots describe how the values of the coefficients vary from total shrinkage to the
their least-squares values. The right-hand panels show k-fold cross-validated mean
squared error (MSE) for each regularisation path, here expressed on the log(œ) scale.
The numbers on the top of each plot indicate the complexity of the models along the
regularisation path or as a function of log(œ). For ridge regression, we note that all
nine predictor variables remain in the model throughout the path, whereas for the
lasso and elastic-net paths predictors are selected out of the model as an increasing
amount of regularisation is applied.

An interesting feature of the ridge-regression path is the coefficient value for
wind speed, which is negative in the least-squares solution but becomes positive
after a small amount of shrinkage, before being shrunk back to zero as a stronger
penalty is applied to the size of the coefficients. The coefficient value for wind speed
does not show this pattern in either the lasso or the elastic-net regularisation paths
because of the property that both these penalties share, whereby coefficients are
truncated at zero and not allowed to change their sign. The elastic-net regularisation
path is intermediate between those of the ridge and lasso, although it is most
similar to the lasso path. The effect of the lower lasso-like penalty in the elastic-
net path for the ozone model is for predictor variables to persist in the model until a
higher overall penalty is applied than under the lasso path. However, whilst the nine
predictors persist in the path for longer, the ridge part of the penalty is shrinking the
size of the coefficients.

The right-hand panels in Fig. 9.27 indicate the optimal degree of shrinkage by
identifying the value of œ that affords the lowest CV MSE (the left vertical line) or
that is within one standard error of the minimum (the right vertical line). On these
plots, model complexity increases from left to right. The optimal amount of shrink-
age indicates that nine, five, and seven predictors should be included in the model
for the ridge regression, lasso, and elastic-net penalties, respectively. Temperature
is the most important variable in predicting the log ozone concentration, followed
by humidity. At larger penalties in the lasso and elastic-net paths, pressure gradient
replaces humidity as the second predictor, after temperature, to be selected in the
model. We do not interpret these models further here.

This is an area of considerable research activity, much of which is of direct
relevance to ecologists and palaeolimnologists but whose importance is poorly
known (e.g., Dahlgren 2010). For example, ter Braak (2009) has developed a new
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Fig. 9.27 Illustration of three shrinkage methods fitted to the ozone concentration data; (a) ridge
regression, (b) the lasso, (c) the elastic net with ’ D 0.5. The left-hand panels show the estimates
of the regression coefficients for the entire regularisation path estimated, with the least complex
model to the left. Estimates of the degrees of freedom associated with various values of the penalty
are show on the upper axis of each panel. The right-hand panels show k-fold cross-validated model
error for increasing (left to right) penalty. Error bars show the range of model errors across the k
folds for each value of the penalty. The best model, with lowest mean squared error is highlighted
by the left-most dashed vertical line in each panel, whilst the simplest model within one standard
error of the best model is shown by the right-most vertical line. The values on the upper axis of
each panel indicate the number of covariates included in the model for the value of the penalty
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regression method, regularisation of smart contrasts and sums (ROSCAS), that
outperforms the lasso, elastic net, ridge regression, and PLS when there are groups
of predictors with each group representing an independent feature that influences
the response and when the groups differ in size.

Discussion and Conclusions

This chapter has described several statistical machine-learning techniques, which
can be loosely categorised into supervised and unsupervised learning techniques.
The discussion for individual methods was intentionally brief, with the aim of
introducing palaeolimnologists to the key features of the main machine-learning
methods and illustrating their use. The references cited in each section should
provide access to additional sources of information on each technique, and wherever
possible we have referred to relevant palaeoecological or ecological papers.

A recurring theme in this chapter has been the reduction of bias, variance, or both
in order to identify a model that has low prediction error. Given a model, y D f (x)
C ©, that relates a response y to covariate x, we define the prediction error of a model
as the expected difference between the true, unknown value of the response (y0) and
the predicted value for the response from the model, Of .x/. This prediction error
can be decomposed into three components; (i) bias2, (ii) variance, and (iii) ©, the
irreducible error present even if we knew the true f (x). We are unable to do anything
about ©, so we must concern ourselves with trying to reduce bias, variance, or both
in order to reduce prediction error. The bias2 and variance together yield the mean
squared error of the model (MSE).

To understand what each of these components is, consider a simple regression
model fitted to a response y and covariate x. The relationship is quadratic and we
have five observations. A simple least-squares model using one degree of freedom
fitted to the data will yield predictions that follow a straight line. This model is very
simple, but the straight line does not fit the data well; the model under-fits the data.
Such a model will have high bias; over large parts of the observed data, the model
systematically fails to capture the true relationship between x and y. Alternatively,
we could fit a high degree polynomial that interpolates the training data perfectly,
thus having zero bias. This is a more complex model but it over-fits the training data
and is unlikely to generalise well to new observations for which we want to predict y.
Such a model has high variance; each coefficient in the model has a high degree of
uncertainty because we have used all the data to fit a large number of coefficients.
In between these extremes is a model that has higher bias than the over-fitted model
and lower bias than the simple model and the opposite features for model variance.
Figure 9.28 illustrates this bias–variance tradeoff.

Several methods that we have introduced focus on reducing the variance part of
MSE, such as bagged trees, random forests, and model averaging in an information
theoretic framework. Shrinkage methods, introduced towards the end of the chapter,
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bias against variance to achieve an overall lower prediction error. Bias2 C Variance D MSE (mean
squared error). © is the irreducible error that is present in the model even if one knew the true
relationship between the response and the predictors rather than having to estimate it

sacrifice a small increase in model bias (the estimates of regression coefficients
using the methods are biased) for a larger reduction in model variance by shrinking
coefficient estimates to zero. Of the methods discussed, only boosting has the
potential to reduce both the bias and the variance of the fitted model. Bias is reduced
by focussing on those observations that are poorly fitted by previous trees in the
ensemble, whilst variance is reduced by averaging predictions over a large ensemble
of trees.

Understanding the bias–variance trade-off is key to the successful use of
statistical machine-learning where the focus is on producing a model for prediction
that has the lowest possible prediction error given the available training data.

One feature of all of the techniques discussed is that they use the power of
modern computers to learn aspects of the training data that allows the model to
make accurate predictions. How well one of these algorithms or methods performs
tends to be evaluated on the basis of its ability to predict the response variable
on an independent test-set of samples. However, many, if not the majority of the
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techniques we describe do now have a thorough statistical underpinning (Hastie
et al. 2011). This is especially so for the tree-based methods and boosting in
particular.

What we have not been able to do here is illustrate how to go about fitting these
sorts of models to data. Clearly, the availability of suitable software environments
and code that implements these modern machine-learning methods is a prerequisite.
All of the detailed examples have been performed by the authors with the R
statistical software (version 2.13.1 patched r56332: R Core Development Team
2011) using a variety of add-on packages available on the Comprehensive R Archive
Network (CRAN). A series of R scripts are available from the book website which
replicate the examples used in this chapter and demonstrate how to use R and the
add-on packages to fit the various models. We have used R because it is free and
open source, and because of the availability of high-quality packages that implement
all the machine-learning methods we have discussed. Other computational statistical
software packages, such as MATLAB®, should also be able to fit most if not all the
methods described here.

The technical and practical learning curves are far steeper for software such
as R and the statistical approaches we discuss than the usual suspects of ordina-
tion, clustering, and calibration most commonly employed by palaeolimnologists.
Machine-learning methods tend to place far higher demands on the user to get the
best out of the techniques. One might reasonably ask if this additional effort is
worthwhile? Ecological and palaeoecological data are inevitably noisy, complex,
and high-dimensional. The sorts of machine-learning tools we have introduced here
were specifically designed to handle such data and are likely to perform as well if not
better than the traditional techniques most commonly used in the palaeolimnological
realm. Furthermore, if all one knows is how to use CANOCO or C2 there will be
a tendency to view all problems as ordination, calibration, or something else that
cannot be handled. This situation is succinctly described as Maslow’s Hammer; “it
is tempting, if the only tool you have is a hammer, to treat every problem as if it
were a nail” (Maslow 1966: p.15).

This chapter aims to provide an introduction to the statistical machine-learning
techniques that have been shown to perform well in a variety of settings. We
hope that it will suitably arm palaeolimnologists with the rudimentary knowledge
required to know when to put down the hammer and view a particular problem as
something other than a nail.
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